Subject Code:G1502/R13

M. Tech -I Semester Regular/Supplementary Examinations, April, 2015 ADVANCED MECHANICS OF SOLIDS
(Common to MD and MED)

Time: 3 Hours

Max Marks: 60

Answer any FIVE questions All questions carry EQUAL marks

1. a) Differentiate between plane stress and plane strain problems.
b) The state of stress at a point is given as follows. Calculate three principal stresses

$$
\sigma_{i j}=\left[\begin{array}{ccc}
12.31 & 4.2 & 0.84 \\
4.2 & 8.96 & 5.27 \\
0.84 & 5.27 & 4.34
\end{array}\right] M P a
$$

2. a) Define buckling. Calculate buckling load of a hinged-hinged column subjected to end axial compressive load.
b) Differentiate between statically determinate and indeterminate structures
3. A beam AB of span 3 m is fixed at both ends and carries a point load of 9 KN at a distance of 1 m from support A . The moment of inertias are shown in fig.1. Using Castigliano's theorem, calculate the reactions and moments.

4. A simply supported beam of rectangular section of 8 cm and 12 cm depth subjected to a point load of 1000 N at center and is inclined at an angle of 45 degrees to the vertical plane of symmetry. What is the stress due to bending at four corners of the cross section. Also locate neutral axis. Take length of the beam as 3 m .
5. a) Differentiate between straight and curved beams
b) Derive Winkler-Bach formula for the given curved beam from first principles. Also sketch stress distribution across the depth of the section.

Subject Code: G1502/R13

6. The aluminum ($\mathrm{G}=27.1 \mathrm{GPa}$) hollow thin walled torsion member has shown dimensions in Fig.2. Its length is 3 m . If the member is subjected torque of $11 \mathrm{KN}-\mathrm{m}$, determine the maximum shear stress and angle of twist.

7. Fig. 2
8. Explain the solution of elliptical cross section bar subjected to torque by stress function approach
9. a) What is the significance of calculating contact stresses when two bodies in contact. Explain?
b) Explain the procedure to calculate principal stresses when two bodies (sphere and sphere) in contact
