M. Tech. I Semester Supplementary Examinations, JAN/FEB-2018 OPTMIZATION TECHNIQUES & APPLICATIONS

(Thermal Engineering)

Time: 3 hoursMax. Mark			s: 60	
Answer any FIVE Questions All Questions Carry Equal Marks				
1.	a b	Define the gradient of the function. Explain its importance in the multi variable optimization Write a brief note on optimization search methods	6M 6M	
2.	a b	Define the gradient of the function. Explain its importance in the multi variable optimization Using the variable metric method, find the minimum of the function $Min f(X) = x1^2 \cdot x(x2+3x2)^2$ Take initial point as [1, 2]	6M 6M	
3.	a b	What is dynamic programming explain with suitable example? What are the application of dynamic programming	6M 6M	
4.	a b	What is Newton-Raphson method Use the Newton-Raphson method with $x_0 = 2$ to find the root of the equation $x^3 - x - 1 = 0$ correct to four desired points	4M 8M	
5.		x = x = 1 = 0 correct to four decimal points Explain about unconstrained Geometric programming and constrained Geometric Programming by considering a suitable example	12M	
6.		Explain Quasi-Newton method by considering an example	12M	
7.	a b	Define gradient of a function. Explain why is it called steepest ascent direction? Using Steepest decent method Min $f(x) = x_1^2 + x_2^2 - 2x_1 - 4x_2 + 5$ Take a starting point as a [0, 0]. Show calculations only for two iterations	6M 6M	
8.		What is PI control? Explain First order and second order systems with PI control	12M	

1 of 1

WWW.MANARESULTS.CO.IN