R13

Set No. 1

IV B.Tech I Semester Regular Examinations, November - 2016 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Instrumentation Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B **** PART-A (22 Marks) 1. a) What are the steps involved in IC fabrication. [4] b) Draw the circuit diagram for CMOS two-input NAND gates. [4] c) Define Fan-in and Fan-out. [3] d) Write about pass transistor and pass transistor gates. [4] e) Write note on package solution. [4] f) What is the need of a FPGA? And write its applications. [3] $\underline{\mathbf{PART-B}} (3x16 = 48 Marks)$ 2. a) Explain about various IC technologies [8] b) Explain the term output conductance, using necessary equations. [8] 3. a) Design a stick diagram for NMOS EX-OR gate. [8] b) Draw the mask layout of 1-bit CMOS shift register cell. [8] 4. a) Define inverter delay? Explain. [8] b) Define scaling factor? Explain different types of device parameters. [8] 5. a) Explain the design of a 4-bit shifter. [8] b) Discuss the general arrangement of a 4-bit arithmetic process. [8] 6. a) Explain mixed signal design with neat sketch. [8] b) Discuss the clock mechanisms [8] 7. a) Explain the basic architecture of FPGA. [8] b) Explain the FPGA design process. [8]

1 of 1

R13

Set No. 2

[4]

[4]

IV B.Tech I Semester Regular Examinations, November - 2016 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

DADE A (22 M 1)

	<u>FAR1-A</u> (22 Warks)		
1.	a)	Explain the figure of merit of a MOS transistor.	
	b)	What are scalable design rules and list its disadvantages.	

c) What are the sources of wiring capacitances? [3]d) Explain charge storage. [4]

e) What is testing? Explain. [4]f) Write the steps to design an FPGA. [3]

 \underline{PART} \underline{B} (3x16 = 48 Marks)

2.	a)	Explain the MOS transistor operation with the help of neat sketches in the	
		Enhancement mode.	[8]

b) Explain how the BiCMOS inverter performance can be improved. [8]

3.	a)	What are the different types of design rules? Explain.	[8]

b) What is a stick diagram? Draw the stick diagram and layout for a CMOS [8] inverter.

4. a) Explain briefly about sheet resistance? [8]

b) Discuss the limits due to subthreshould current. [8]

5. Explain bus arbitration logic for n-line bus structured design approach. [16]

6. a) Explain the single Stuck-at Fault model. [8]

b) Discuss the ASIC design flow. [8]

7. a) How to design FPGA-Based PCBs? Explain. [8]

b) Write about FPGA families of different vendors. [8]

1 of 1

R13

Set No. 3

IV B.Tech I Semester Regular Examinations, November - 2016 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

PART-A (22 Marks)

1.	a)	Draw the basic circuit of NMOS and CMOS inverter.	[4]
	b)	What are absolute design rules?	[4]
	c)	List out the limitations of scaling?	[3]
	d)	What is pre-charged bus concept?	[4]
	e)	Give the advantages and disadvantages of cell based design.	[4]
	f)	Write about configuration modes.	[3]
		$\underline{\mathbf{PART-B}}\left(3x16=48Marks\right)$	
2.	a)	Derive the expression for the threshold voltage of MOSFET.	[8]
	b)	Explain the MOS transistor operation with the help of neat sketches in the Depletion mode.	[8]
3.		Draw the stick diagram and mask layout for CMOS two input NOR gate and stick diagram of two input NAND gates.	[16]
4.	a)	Discuss about nMOS transistor as a switch and pMOS transistor as a switch.	[8]
	b)	Define standard unit capacitance? Explain.	[8]
5.	a)	Explain two-phase clocking.	[8]
	b)	Discuss some system considerations.	[8]
6.	a)	Give the overflow of system on chip designs.	[8]
	b)	Explain the FPGA design flow.	[8]
7.		Explain stack implementation using VHDL.	[16]

1 of 1

R13

Set No. 4

IV B.Tech I Semester Regular Examinations, November - 2016 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

		PART-A (22 Marks)	
1.	a)	Compare CMOS with bipolar technologies.	[4]
	b)	Draw the circuit diagram for CMOS two-input NOR gates.	[4]
	c)	What are the advantages and disadvantages of dynamic logic?	[3]
	d)	Write about dynamic register element.	[4]
	e)	Write the steps to resolve the clock skew problem.	[4]
	f)	What parameters to be consider while identifying the FPGA?	[3]
		$\underline{PART-B} (3x16 = 48 Marks)$	
2.	a)	Explain different steps involved in the IC fabrication?	[8]
	b)	Draw the circuit for nMOS inverter and explain its operation and characteristics	[8]
3.	a)	Explain MOS layers with a neat sketch.	[8]
	b)	Explain 2µm CMOS design rule for wires?	[8]
4.	a)	What are the limits on logic levels and supply voltage due to noise in scaling?	[8]
	b)	Realize the NAND gate using nMOS technology.	[8]
5.	a)	Explain the structured design approach of parity generator.	[8]
	b)	Explain switch logic?	[8]
6.	a)	Discuss the design process for developing a chip.	[8]
	b)	Compare Full-Custom design with semi-custom design.	[8]
7.		Explain implementation of queue using VHDL.	[16]

1 of 1