B.Tech I Year (R13) Supplementary Examinations December/January 2014/2015 ENGINEERING MECHANICS
 (Common to CE, ME and Ch.E)

Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) What is the difference between the collinear and concurrent forces?
(b) State parallelogram law of forces
(c) Explain the term Cone of friction.
(d) Stae the laws of static and dynamic friction.
(e) Define centre of gravity and centroid
(f) State the parallel axis theorem
(g) What do you mean by rectilinear motion and give examples
(h) Explain the principle of conversation of energy
(i) Define perfect frame and imperfect frame.
(j) What do you understand by free vibrations?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

3 (a) A simply supported beam of length 6 m carrying a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ over a length of 3 m
(b) A force of 100 N is acting at a point making an angle of 30° with the horizontal. Determine the components of this force along X and Y axis.

UNIT - II

Find the frictional force in the block shown in figure below and state whether the block is in equilibrium or in motion. Also determine the additional force ' P ' that must be added to 140 N force, to just move the block to the left.

OR
The resultant of four forces which are acting at a point O as shown in figure below is along Y -axis. The magnitude of forces F_{1}, F_{3} and F_{4} are $10 \mathrm{kN}, 20 \mathrm{kN}$ and 40 kN respectively. The angles made by $10 \mathrm{kN}, 20$ kN and 40 kN with X - axis are $30^{\circ}, 90^{\circ}$ and 120° respectively. Find the magnitude and direction of force F_{2} if resultant is 72 kN .

Abstract

from the right end. Calculate the reactions at both ends.

A block over lying a 10° wedge on a horizontal floor and leaning against vertical wall weighing 1500 N is to be raised by applying a horizontal force to the wedge. Assuming co-efficient of friction between all the surfaces in contact to be 0.3 . Determine the minimum horizontal force to be appljed to raise the block.

WWW.ManaResults.CO. In contd. in page 2

UNIT - III

11 A body oscillates with a simple harmonic motion along x - axis. Its displacement varies with time according to $x=8 \operatorname{Cos}(\pi t+\pi / 4)$, where t is in seconds and angle in radians.
(a) Determine amplitude, frequency and period of vibration.
(b) Calculate the velocity and acceleration of the body at any time ' t '.
(c) Using results of (b), determine the position, velocity and acceleration of the body at $\mathrm{t}=1$ second.

