B.Tech III Year I Semester (R13) Regular Examinations December 2015
 SURVEYING - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

PART - A
(Compulsory Question)

1 Answer the following: (10 $\times 02=20$ Marks)
(a) What is trigonometric leveling? What are its advantages over direct leveling?
(b) An instrument was set up at a point 200 m away from a transmission tower. The angle of elevation to the top of the tower is $30^{\circ} 42^{\prime}$, where as the angle of depression to the bottom was $2^{\circ} 30^{\prime}$. Calculate the total height of the transmission tower.
(c) Define tacheometry and list out the uses of tacheometry.
(d) List out the types of errors in tacheometry.
(e) What are the requirements of a good signal which it should fulfill?
(f) List out the reference grids for setting out works.
(g) What are the methods of designation of curve? Give the relationship between degree of a curve and its radius.
(h) Enumerate the field problems in setting out curves.
(i) What is a total station? What are its advantages over traditional surveying instrument?
(j) What do you understand by remote sensing? Give the classification of remote sensing.
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

4 The following are the distances of the staff position from the instrument and the corresponding staff intercepts. Calculate the tacheometric constants.

$\mathrm{D}(\mathrm{m})$	20	50	100	120
$\mathrm{~S}(\mathrm{~m})$	0.195	0.495	0.997	1.197

OR
5 A tacheometer was set up at a station A and the readings on a vertically held staff at B were $2.255,2.605$ and 2.955 , the line of sight being at an inclination of $+8^{\circ} 24^{\prime}$. Another observation on the vertically held staff at B.M. gave the readings 1.640, 1.920 and 2.200 , the inclination of the line of sight being $+1^{\circ} 06^{\prime}$. Calculate the horizontal distance between A and B and the elevation of B if the R.L. of B.M. is 418.685 m . The constants of the instruments were 100 and 0.3 .

Contd. in page 2

UNIT - III

At a satellite station $\mathrm{S}, 5.5 \mathrm{~m}$ from the main triangulation A , the following directions were observed: $\left\llcorner A=00^{\circ} 00^{\prime} 00^{\prime \prime},\left\llcorner B=130^{\circ} 20^{\prime} 30^{\prime \prime},\left\llcorner C=233^{\circ} 25^{\prime} 05^{\prime \prime},\left\llcorner D=300^{\circ} 10^{\prime} 00^{\prime \prime}\right.\right.\right.\right.$. The lengths $A B, A C$ and AD were computed to be $3200.7 \mathrm{~m}, 4120.5 \mathrm{~m}$ and 2996.6 m respectively. Determine the directions $A B, A C$ and $A D$.

OR

7 How would you set out a culvert in the field? Explain the method with neat sketches.

UNIT - IV

Two tangents at chainage 2380 m , the deflection angle being $50^{\circ} 30^{\prime}$. Compute the necessary data for setting out a 5.7° curve to connect the two tangents, by using Rankine's method of deflection angles. Take the length of the normal chord as 30 m .

OR
Two straights $A B$ and $B C$ intersected by a line MN. The angles AMN and MNC are 145° and 140° respectively. The radius of the first curve is 400 m and that of the second curve is 600 m . Find the chainages of the tangent points and the point of compound curvature, chainage of the point of intersection is 5555 m .

UNIT - V

10 Discuss the following:
(a) Principle of EDM.
(b) Types of EDM instruments.

OR

11 Write short note on remote sensing platform and also discuss about the geostationary satellites.

