Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: (10 X $02=20$ Marks)
(a) Define co-efficient of refraction.
(b) Define trigonometrical leveling.
(c) Mention various types of errors in stadia surveying.
(d) List out the different systems of tacheometric measurement.
(e) Define triangulation figure.
(f) What is meant by survey grid?
(g) What is meant by peg interval?
(h) What is meant by point of tangency?
(i) Define amplitude modulation.
(j) Define passive remote sensing.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

The following reciprocal observations were made from two points P and Q :
Horizontal distance between P and $\mathrm{Q}=33128 \mathrm{~m}$
Angle of depression of Q at P

$$
=6^{\prime} 20^{\prime \prime}
$$

Angle of depression of P at Q
= 8 '10"
Height of signal at P

$$
=4.87 \mathrm{~m}
$$

Height of signal at Q

$$
=4.07 \mathrm{~m}
$$

Height of the instrument at P

$$
=1.27 \mathrm{~m}
$$

Height of the instrument at Q

$$
=1.34 \mathrm{~m}
$$

Calculate:

(a) The R.L. of Q , if that of P is 1248.65 m .
(b) The average co-efficient of refraction at the time of observations. Take $\mathrm{R} \sin 1^{\prime \prime}=30.88 \mathrm{~m}$.

OR

Obtain an expression for the difference in level between two points by reciprocal vertical angle readings from two stations. Height of instruments and targets should not be ignored.

UNIT - II

Following observations were taken from two traverse stations by means of a tacheometer fitted with an anallactic lens. The constant of the instrument is 100.

Inst. Station	Staff station	Height of inst.	Bearing	Vertical angle	Staff reading
A	C	1.38	$226^{\circ} 30^{\prime}$	$+10^{\circ} 12^{\prime}$	$0.765,1.595,2.425$
B	D	1.42	$84^{\circ} 45^{\prime}$	$-12^{\circ} 30^{\prime}$	$0.820,1.840,2.860$

Co-ordinates of station A $212.3 \mathrm{~N} \quad 186.8 \mathrm{~W}$
Co-ordinates of station B $102.8 \mathrm{~N} \quad 96.4 \mathrm{~W}$
Compute the length and gradient of the line $C D$, if B is 6.50 m higher than A.

UNIT - III

7 (a) Explain horizontal control for setting out in detail.
(b) Explain offset pegs with neat sketch.

UNIT - IV

9 The following data refer to a compound circular curve which bears to the right: Total deflection angle $=93^{\circ}$, degree of first curve $=4^{\circ}$, degree of second curve $=5^{\circ}$, point of intersection at $45+61$ (20 m units). Determine in 20 metre units the running distance of the tangent points and the point of compound curvature, given that the latter point is $6+24$ from the point of intersection at back angle of $290^{\circ} 36^{\prime}$ from the first tangent.

UNIT - V

Explain in detail different types of EDM instruments.

OR

11 Explain in detail the different types of platforms in use in remote sensing.

