B.Tech III Year II Semester (R13) Regular \& Supplementary Examinations May/June 2017

FINITE ELEMENT METHODS IN ENGINEERING

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) What is discretization?
(b) Write the strain-displacement relationships in matrix form for a 3-D element.
(c) Write the shape functions for a 3-noded 1-D element.
(d) Draw the Pascal's triangle for 2-D elements.
(e) What is the principle used in deriving element stiffness matrix?
(f) Write the strain displacement matrix for a 4-noded rectangular element.
(g) What are sub-parametric elements?
(h) Write the Jacobian matrix for a 2-D isoparametric element.
(i) Write the gauss point of second order gauss quadrature in 1-D gauss quadrature.
(j) Write the sample point of 3×3 gauss quadrature for 3-D problems.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I

Determine the displacements of nodes of the spring system shown in figure below.

UNIT - II

Write and explain the various engineering applications of FEM. Also write the advantages.
OR

The structure consists of two bars. An axial load of $P=200 \mathrm{kN}$ is loaded as shown in figure below. Determine the nodal displacements, stresses and reaction forces for the structure shown in figure below.

For a plane stress triangular element the nodes are $i(1,2), j(4,1)$ and $k(3,6)$ all in meters. Obtain the shape functions $\mathrm{N}_{1}, \mathrm{~N}_{2}$ and N_{3} at the point $\mathrm{P}(2,3)$.

Contd. in page 2

UNIT - III

6 Derive the nodal load vectors for a CST element when both surface forces and body forces exist. And also derive the nodal load vectors when only gravity force exists.

OR
7 Derive the shape function matrix, strain displacement matrix and stiffness matrix for a 4-noded rectangular element.

UNIT - IV

8 Explain the formulation of 4-noded 2-D isoparametric quadrilateral element. Derive the strain displacement matrix and stiffness matrix.

OR

9
Explain:
(a) Lagrangian elements.
(b) Serendipity elements.

UNIT - V
10 (a) Evaluate $\int_{1}^{4} \frac{d x}{x}$ using Gaussian three point formula.
(b) Evaluate $\int_{-1}^{+1} \phi(r) d r$, if $\phi=a_{1}+a_{2} r+a_{3} r^{2}+a_{4} r^{3}$.

OR
11 (a) Explain static condensation.
(b) Explain the 2-D gauss quadrature in detail.

