B.Tech IV Year I Semester (R13) Supplementary Examinations June 2018 GEOTECHNICAL ENGINEERING – II

(Civil Engineering)

Max. Marks: 70

Time: 3 hours

1

7

PART – A

(Compulsory Question)

- Answer the following: (10 X 02 = 20 Marks)
- (a) Define 'Recovery ratio' of a soil sample.
- (b) A soil sampler has an area ratio of 20% can you get an undisturbed sample using it. Give reason.
- (c) Why method of slices is called "Swedish circle method"?
- (d) Can we use Taylor's stability number for slopes in cohesion-less soils? Give reasons.
- (e) If a retaining wall is not moving horizontally, what is the lateral pressure acting on it?
- (f) In pure clay soil, up to what depth can we have a vertical cut without any lateral support.
- (g) What is the assumed inclination of the boundaries of elastic zone in Terzaghi's bearing capacity theory?
- (h) What equation do you use to calculate the minimum depth of a shallow foundation required?
- (i) Define "Efficiency of a pile group".
- (j) What is meant by 'optimum spacing' of piles in a pile group?

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Explain with a neat sketch the procedure of conducting a plate load test.
 - (b) How do you plan and prepare a soil investigation report for a proposed 10 kilometre highway.

OR

- 3 (a) Explain wash boring with a neat sketch.
 - (b) What is a bore-log? Write a typical bore-log & explain how it is used in design of foundation.

UNIT – II

- 4 (a) What are the causes of failure of slopes?
 - (b) A soil slope is inclined at $i = 40^{\circ}$ and has a height of 6 m. The soil properties are $C_u = 40 \text{ kN/m}^2$ $\gamma = 16 \text{ kN/m}^3 \& \varphi_u = 0$. Fellenius angles are $\alpha = 27^{\circ}$, $\beta = 38^{\circ}$. Use Swedish arc method & determine the factor of safety.

OR

- 5 (a) What is the basis of Taylor's stability number? Explain briefly.
 - (b) A canal is excavated to a depth of 4 m below GL. The soil has $C = 15 \text{ kN/m}^2$, $\phi = 15^\circ$, $\rho = 0.8$, G = 2.6. The side slopes of canal are 1:1. Calculate the factor of safety w.r.t cohesion when the canal is full, if $S_n = 0.083$ and when it is suddenly & completely emptied using $S_n = 0.122$, calculate F_c .

UNIT – III

- 6 (a) Define / Explain the following: (i) Active earth pressure. (ii) Passive earth pressure. (iii) Earth pressure at rest.
 - (b) A retaining wall 6 m in height has vertical back & backfill surface is horizontal. The soil in backfill has $\gamma = 17.8 \ kN/m^3$, $\phi = 32^\circ$, $\delta = 23^\circ$, C = 0. Use Rehbann's graphical method & determine the total active earth pressure on the wall, its inclination & position on the wall.

OR

- (a) Explain with a neat sketch step-by-step procedure of Rehbann's graphical method to determine the total active earth pressure.
 - (b) A retaining wall 6.6 m in height has a smooth vertical back. The backfill has apparent cohesion of 24 kPa & $\phi = 0$. Calculate the earth pressure at top & bottom of the wall, depth of tension cracks and the total active earth pressure & its position.

Contd. in page 2

www.manaresults.co.in Page 1 of 2

UNIT – IV

- 8 (a) In a plate load test, 300 mm square plate is used on a sandy soil. If S_p is the settlement of the plate. What would be the settlement S_F of a square footing of sides 1.5 m? If the soil is clay, what would be S_F .
 - (b) A square footing of sides 1.8 m is placed at 1.5 m depth below GL. The load from the column is 1000 kN. The soil is sandy up to 3 m depth with $\gamma = 16 \text{ kN/m}^3$. Below this is a saturated clay 2 m thick with $\gamma_{sat} = 18.81 \text{ kN/m}^3$, G = 2.7, W_L = 52%. Estimate the expected final consolidation settlement.

OR

- 9 (a) Explain the following with relevant formulae:
 - (i) Immediate elastic settlement.
 - (ii) Primary consolidation settlements.
 - (iii) Secondary compression settlement.
 - (b) Design a circular footing to support a column load of 1200 kN at a depth of 1.5 m below GL. The soil is purely cohesive soil with $\phi_u = 0$, $C_u = 70$ kPa, $\gamma = 16$ kN/m³. Use F.O.S = 3.

$\left(UNIT - V \right)$

- 10 (a) Explain with a neat sketch the procedure to conduct a static pile load test on a working pile.
 - (b) Calculate the safe load carrying capacity of a square pile of sides 400 mm & length 8 m in a soil which has C = 60 kPa, $\phi = 20^{\circ}$, $\gamma = 15 \text{ kN/m}^3$, use $N_c = 9$, $N_q = 10 \text{ & } N_r = 34$. Assume $\alpha = 0.8$, FOS = 2.5.

OR

- 11 (a) Draw a neat sketch of an under-reamed pile with two bulbs showing standard dimensions & explain.
 - (b) A six piles group is driven into a sandy soil up to 7 m depth. The piles are 300 mm in diameter at 750 mm c/c spacing. The soil properties are C = 0, $\phi = 30^{\circ}$, $\delta = 20^{\circ}$, $\gamma = 18 kN/m^3$, K = 1.2 use $N_q = 18$, $N_r = 37$, FOS = 3 for end bearing & FOS = 2 for skin friction & calculate the safe load on the pile group.
