Code: 13A02301

B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016

ELECTRICAL MACHINES - I

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) What is meant by statically and dynamically induced e.m.f?
- (b) Write the expression for self-Inductance.
- (c) What do you mean by commutation?
- (d) Define back e.m.f.
- (e) Give the applications of DC shunt generators.
- (f) What is the principle of operation of DC motor?
- (g) What are the factors that govern controlling of motor speed?
- (h) Write down the EMF equation of a single phase transformer.
- (i) What is retardation test?
- (j) Mention various types of losses in dc machines.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

2 Explain briefly about singly-excited and doubly-excited systems with suitable examples.

OR

3 Explain in detail about electro mechanical energy conversion process.

[UNIT - II]

4 Derive the E.M.F. equation in a dc machine.

OR

A shunt generator delivers 195 A at terminal voltage of 250 V. The armature resistance and shunt field resistance are 0.02 ohms and 50 ohms respectively. The iron and copper losses are equal to 950 W. Find: (a) E.M.F generated. (b) Cu losses. (c) Output of the prime mover. (d) Commercial, mechanical and electrical efficiencies.

UNIT – III

6 Explain briefly about the no load and the open circuit characteristics of a separately excited generator.

OR

7 Define the critical speed and critical resistance. Explain how these are determined from OCC of the DC shunt generator.

UNIT - IV

What is meant by armature reaction? Show that the effect of armature mmf on the main field is entirely cross-magnetizing.

OR

- For OCC, A shunt DC motor has $E = 235 \, V$, $V_t = 250 \, V$ and $I_f = 1.35 \, A$. The motor is operating at 1200 rpm while supplying 25 HP to a coupled mechanical load. At the point of operation, the rotational losses are 550 W.
 - (a) Determine the value of developed torque.
 - (b) Calculate the value of armature current.
 - (c) Find the value of armature resistance.
 - (d) Determine the value of efficiency at the point of operation.

UNIT – V

10 Explain in detail about We Working of Hopkins of Fest with necessary calculations.

OR

11 Explain the Direct method of testing and Brake test in a dc machine.