**R13** 

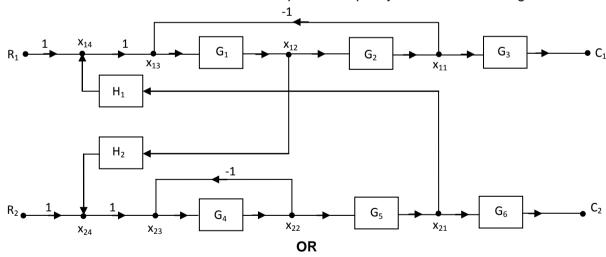
Code: 13A02402

## B.Tech II Year II Semester (R13) Supplementary Examinations December/January 2015/2016

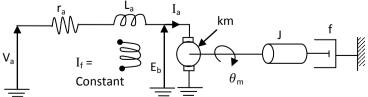
## **CONTROL SYSTEMS ENGINEERING**

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70


## **PART – A** (Compulsory Question)

\*\*\*\*


- 1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 
  - (a) List all electrical analogs of rotational mechanical systems using force-current analogy.
  - (b) A closed loop control system has an open loop gain of 100. Its feedback loop has a gain of 0.005. Find its sensitivity for negative feedback.
  - (c) Write the expressions for the response of first order system to the unit step input signal and unit ramp input signal in time domain.
  - (d) What is a type 1 system? What is its steady state error for unit ramp input?
  - (e) Determine the stability of the system with the characteristic equation  $S^4 + S^3 + S^2 + 4S + 6 = 0$ .
  - (f) Discuss the effect of addition of open loop poles on the root loci.
  - (g) Define gain margin.
  - (h) Define gain cross-over point.
  - (i) Define the state of a system.
  - (j) Derive the response of unforced system.

## PART – B (Answer all five units, $5 \times 10 = 50 \text{ Marks}$ ) UNIT – I

2 Find the transfer function matrix for the two input two output system shown in the figure below.



Develop a signal flow graph for the motor shown in figure below with the given constants. Find the transfer function  $\frac{\theta_m(s)}{V_a(s)}$  using Mason's formula.



Where r<sub>a</sub> is armature resistance; L<sub>a</sub> is armature inductance; J is motor inertia; f is motor friction and km is motor constant. www.ManaResults.co.in

Contd. in page 2

UNIT – II

A unity feedback system has an open loop transfer function  $G(s) = \frac{25}{s(s+8)}$ . Determine its damping ratio, peak overshoot and time required to reach the peak output. Now a derivative component having transfer function of  $\frac{s}{10}$  is introduced in the system. Discuss its effect on the values obtained.

OR

A unity feedback system having open loop transfer function as  $G(s) = \frac{k(s+2)}{s(s^3+7s^2+12s)}$ , determine: (i) Type of system. (ii)  $k_p$ ,  $k_v$  and  $k_a$ . (iii) Steady state error for parabolic input.

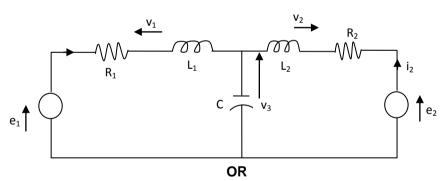
UNIT – III

Sketch the root locus for a unity feedback system having  $G(s) = \frac{k(s+1)}{s^2(s+5)}$ 

**OR** 

7 The open loop transfer function of a unity feedback system is given by  $G(s) = \frac{k}{s(s+2)(s^2+6s+25)}$ . Sketch the root locus for  $0 \le k \le \infty$ .

UNIT – IV


Consider the transfer function  $GH(s) = \frac{60}{(s+1)(s+2)(s+5)}$ . Comment on stability of the system using the sketch of its Nyquist plot.

OR

9 Explain Nyquist criterion. Write the procedure for determining Nyquist plot.

UNIT - V

10 Consider the electric circuit shown in the figure below, where  $e_1$  and  $e_2$  are the inputs and  $v_1$ ,  $v_2$ ,  $v_3$  are outputs. Choosing  $i_1$ ,  $i_2$  and  $i_3$  as the state variables, determine the system equations and write the state model.



Consider the system  $\dot{X} = AX \ with \ X_0 = X(0)$  where  $A = \begin{bmatrix} -2 & -4 \\ 1 & -2 \end{bmatrix}$ . Find  $\phi(t)$  and the solution for  $X_0 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ .

\*\*\*\*