

Max. Marks: 70

B.Tech III Year I Semester (R13) Supplementary Examinations June 2016

ELECTRICAL MEASUREMENTS

(Electrical & Electronics Engineering)

Time: 3 hours

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) A wattmeter having a range of 500 W has an error of $\pm 1.5\%$ of full scale deflection. If the true power is 50 W, what would be the range of the readings?
 - (b) What are the properties of spring material used in indicating instruments?
 - (c) What is dissipation factor? How is it related to Q factor?
 - (d) Name the null detectors commonly used for AC bridges.
 - (e) What is meant by meter constant of an energy meter?
 - (f) What is the difference between an energy meter and a wattmeter?
 - (g) What are instrument transformers? How do they differ from power transformers?
 - (h) Why the secondary of current transformer is never kept open-circuited?
 - (i) Why are ballistic tests conducted?
 - (j) Why magnetic measurements are not as accurate as other types of measurements?

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 Explain principle, construction and working of PMMC instruments. Derive an expression for the deflection.

OR

3 What is CRT? With the help of a neat diagram, explain briefly the main parts of a CRT.

UNIT - II

- 4 (a) Describe with the help of diagram, the loss of charge method for determining the insulation resistance of a length of cable.
 - (b) The value of a high resistance is measured by loss of charge method. A capacitor having a capacitance of $2.5 \,\mu F$ is charged to a potential of 500 V D.C and is discharged through the high resistance. An electrostatic voltmeter, kept across the high resistance, reads the voltage as 300 V at the end of 60 seconds. Calculate the value of high resistance.

OR

- 5 (a) With the help of circuit diagram, explain how capacitance can be measured by the use of a Schering bridge.
 - (b) In measuring a capacitance using Schering bridge, balance was obtained with the following values of elements in the AC bridge network.
 - Arm AB ... Capacitor of 0.4 μ *F* in parallel with 1.5 $k\Omega$ resistance;
 - Arm BC ... Resistance of 3 $k\Omega$;
 - Arm CD ... Unknown capacitor C_x and R_x in series;
 - Arm DA ... Capacitance of 0.4 μ F;

Frequency ...1 kHz.

Determine the following:

(i) R_x and C_x .

(ii) Dissipation factor.

Contd. in page 2

WWW.MANARESULTS.CO.IN

UNIT - III

6 Explain the working of dynamometer wattmeter. Derive an expression for its deflection.

OR

7 With a neat construction diagram, explain the operation of single phase induction type energy meters.

UNIT - IV

- 8 (a) Explain the principle of working of a PT and give expressions for the ratio and phase angle errors.
 - (b) A potential transformer of ratio 1000/100 has primary resistance 94.5Ω , secondary resistance 0.86Ω , primary reactance 66.2Ω , total equivalent reactance 110Ω , and no-load current 0.02 A at 0.4 power factor. Calculate the phase angle error at no-load.

OR

- 9 (a) What are polar potentiometers? Explain the working of drysdale polar potentiometer.
 - (b) The current taken by a small iron core choke coil is measured by a rectangular co-ordinate A.C potentiometer. A 1.0Ω non-inductive resistance is connected in series with the choke coil. The voltages measured across the resistance and the coil are (0.8 –j 0.75) V and (1.2 +j 0.3)V respectively. Determine the iron loss in the coil. Assume the voltage and current to be sinusoidal.

UNIT - V

10 Explain the determination of B-H curve by the method of reversals.

OR

11 Why is the ac magnetic testing carried out? Give a brief description on iron losses. What are the factors affecting permeability and hysteresis losses?

Page 2 of 2