Max. Marks: 70

B.Tech III Year II Semester (R13) Regular Examinations May/June 2016

POWER SYSTEM PROTECTION

(Electrical and Electronics Engineering)

Time: 3 hours

10

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Write the universal torque equation.
 - State any two advantages and disadvantages of microprocessor based relays. (b)
 - A bar-type current transformer which has 1 turn on its primary and 160 turns on its secondary is to be (C) used with a standard range of ammeters that have an internal resistance of 0.2 Ω 's. The ammeter is required to give a full scale deflection when the primary current is 800 Amps. Calculate the maximum secondary current and secondary voltage across the ammeter.
 - (d) How does a Buchholz relay work?
 - (e) State drawbacks of a radial electrical distribution system. How these drawbacks are overcome in ring main electrical distribution system?
 - (f) On what basis, the protection zones in a transmission line are categorized?
 - (g) Explain any two methods by which arc can be guenched in circuit breaker.
 - Explain how a circuit breaker is rated. (h)
 - State any two reasons for generation of over voltages in a power system. (i)
 - What is factor of earthing? (j)

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

2 Explain the construction and operation of differential relays, and explain how these relays are helpful in protecting generator windings.

OR

Explain the need for static relays. Explain the basic units in a static relay. Enumerate the advantages and 3 disadvantages of static relays.

(UNIT – II)

- What are the various restraint schemes used? 4 (a)
 - The primary winding of a transformer has 2000 turns and CT ratio is 600:5. The secondary has 10000 (b) turns and is working on a tap of 60%. Find out CT ratio required for secondary side to establish circulating current scheme.

OR

- Explain various types of faults that occur in an electrical generator. 5 (a)
 - Explain in detail the protection scheme for ground fault protection in the electrical generator. (b)

(UNIT – III)

6 Explain the principle involved in protection of long distance transmission lines involving distance relays.

OR

7 With neat diagrams explain the protection schemes for radial and ring-main electrical distribution systems.

In a short circuit test on a 132 kV 3-phase system, the breaker gave the following result: p.f. of the fault 8 0.4, recovery voltage 0.95 of full line value, the breaking current is symmetrical and the re-striking transient had a natural frequency of 16 kHz. Determine the rate of rise of re-striking voltage. Assume the fault is grounded.

OR

With neat diagrams, explain the operation of Vacuum circuit breaker and SF6 circuit breaker. 9

Explain the schemes for protection against over voltages caused due to lightening OR

11 Explain in detail how insulation levels are coordinated in a typical power system.