B.Tech II Year I Semester (R13) Supplementary Examinations June 2015 ELECTRONIC DEVICES AND CIRCUITS

(Common to EEE, ECE & EIE)

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define transformer utilization factor.
 - (b) Define mass action law.
 - (c) Define amplification factor.
 - (d) What is pitch-off voltage?
 - (e) What is DC load line?
 - (f) Write the relation between S and S'.
 - (g) Draw the h-parameter equivalent circuit for transistor.
 - (h) Define input impedance.
 - (i) State any two applications of LCD's.
 - (j) State the disadvantages of LED.

PART – B

(Answer all five units, 5 x 10 = 50 Marks)

UNIT - I

2 Draw and explain the energy band diagrams for extrinsic semiconductor.

OR

3 Explain the working of bridge rectifier. Give the expressions for RMS current, PIV, ripple factor and efficiency.

UNIT - II

4 Explain with the help of neat diagram the structure of an N-channel FET. In what ways it is different from a bipolar transistor.

OR

- 5 (a) Sketch and explain a family of CB output characteristics for a transistor.
 - (b) Indicate the active, cut-off and saturation regions. Explain the shapes of the curves qualitatively.

UNIT - III

6 (a) Derive the expression for I_C versus I_B for a CE transistor configuration in the active region. (b) For $I_B = 0$, what is I_C .

OR

7 In the voltage divider bias circuit, if $V_{CC} = 10 \text{ V}$, $V_{CE} = 5 \text{ V}$, $I_C = 1.2 \text{ mA}$, $R_2 = 10 \text{ k}\Omega$, $\beta = 100$ and $R_E = 270\Omega$ calculate R_1 and R_3 . Assume $V_{BE (active)} = 0.6 \text{ v}$.

UNIT - IV

- 8 (a) Derive the expression for A_V in terms of A_I .
 - (b) In terms of the h parameters and the source resistance, derive the equation for the output admittance.
- 9 Find h_{re} in terms of the CB h parameters.

UNIT - V

OR

10 Sketch and curve of photodiode current as a function of the position of a narrow light source form the junction. Explain the shape of the Refue SULTS.CO.IN

OR

11 Sketch and explain the characteristics of the tunnel diode.

Max. Marks: 70