Code: 13A04302

R13

Max. Marks: 70

B.Tech II Year I Semester (R13) Regular Examinations December 2014

SIGNALS & SYSTEMS

(Common to ECE and EIE)

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Express discrete impulse function in terms of unit step function. Also show graphical illustration.
 - (b) Describe BIBO stability of a system.
 - (c) Describe the convergence of Fourier series.
 - (d) Explain about recursive discrete time filter.
 - What is the condition for existence of Fourier transform? (e)
 - Distinguish between spectrums of CFT and DTFT. (f)
 - Define group delay. (g)
 - (h) What is aliasing?
 - Write the Laplace transform of $f(t) = e^{-j2t} u(t)$. (i)
 - Name the signal which has ROC in entire z- plane and justify your answer. (j)

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- Find which of the following signals are causal or non causal: 2 (i) $x(t) = e^{2t}u(t-1)$. (ii) $x(t) = \cos 2t$. (iii) x(t) = 2u(-t). (iv) x(n) = u(-n). (v) x(n) = u(n+4) - u(n-2). OR
- 3 Check whether the following systems are: (i) Static or dynamic. (ii) Linear on non-linear. (iii) Causal or non-causal. (iv) Time invariant or time variant. (v) Stable on not stable. The given system is $y(n) = a^n u(n)$.

[UNIT - II]

Expand following function f(t) by exponential Fourier series over the interval (0,1). In this interval f(t) is 4 expressed as f(t) = At.

OR

State and prove following properties of DTFS: 5 (i) Time shifting. (ii) Time reversal. (iii) Frequency shifting.

UNIT - III

6 Find Fourier transform of $\cos \omega_0 t$ and sketch its spectrum.

OR

7 Find the DTFT of:

(i) $x(n) = (1/3)^n u(n + 3)$	
(ii) $x(n) = (1/2)^n$	for n= 0,2,4,
= 0	other wise

UNIT - IV

Sketch the characteristics of ideal LPF and obtain the impulse response of it. Is this filter is realizable? 8 If not whv?

OR

9 State and prove sampling theorem for band limited signals using graphical approach.

UNIT - V

Find the Laplace transform of: $x(t) = e^{-(t-2)} (t-2) u(t-2)$ 10 (a) (b) nsform:

X(s) = (1/(s + 1)) - (2/(s - 1))If ROC is -1 < Re(s)

- www.ManaResults.co.in
- (a) State and prove z –transform time reversal property 11
 - (b) Find the inverse z transform of: X(z) = (1/1 + 2z) + (2z/z 0.25)