

B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016 SIGNALS & SYSTEMS

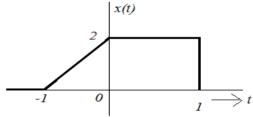
(Common to ECE and EIE)

Max. Marks: 70

Time: 3 hours

1

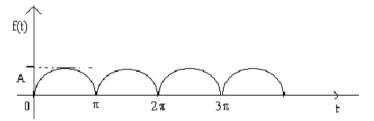
PART – A


(Compulsory Question)

- Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Derive any two properties of Impulse function.
 - (b) Determine whether the given signal $f(t) = \text{Rect}(t/\tau)$ is energy or power & calculate the energy or power.
 - (c) Write Dirichlet conditions for Fourier Series.
 - (d) What is the relationship between Trigonometric and Exponential Fourier series?
 - (e) Find the Fourier transform of f(t) = f(t-2) + f(t+2).
 - (f) Derive Fourier transform of any general Periodic signal.
 - (g) Determine the Nyquist sampling interval of the signal $f(t) = sinc(100\pi t) + 3 sinc^2(60\pi t)$.
 - (h) Find the inverse Z-transform of X(Z) = $3Z^{-1}/[(1-Z^{-1})(1-2Z^{-1})]$ when ROC is {|Z| > 2} using the partial fraction method.
 - (i) Find the Laplace transform of $f(t)=t^2 e^{-3t} u(t)$.
 - (j) Define the Transfer Function and what its relation with Impulse response.

PART – B (Answer all five units, 5 X 10 = 50 Marks) UNIT – I

- 2 (a) Find whether the signal f(t) = 10 Sin (12πt) + 2 u(t) is periodic or not? If periodic what is its fundamental period.
 - (b) Determine the response of the relaxed system characterized by the impulse response: $H(n) = (1/3)^n u(n)$ to the input signal $x(n) = 2^n u(n)$.
 - (c) Plot the Even and Odd components of a given signal x(t).



OR

3 Classify the systems based on the properties and explain each with an example.

UNIT – II

4 (a) Find the Exponential Fourier series expansion of the rectified Sine wave form shown below.

(b) Obtain the Fourier series representation of an impulse train given by: $x(t) = \delta(t - nT)$.

OR

- 5 (a) Determine the spectra of the signal $x(n) = 3 \cos 0.4\pi n + 5 \sin(\pi/2)n$.
 - (b) Derive the power density spectrum of periodic signal. WWW.ManareSults.co.in_{Contd.} in page 2

Code: 13A04302

UNIT – III

- 6 (a) Find the Fourier transform of the function $x(t) = [u(t+2) u(t-2)]cos2\pi t$ using frequency convolution property.
 - (b) Find the Fourier transform of the function $x(t) = t e^{-2t} u(t)$ using frequency differentiation property.

OR

- 7 (a) Find the Fourier transform of the function $x(n) = [1/2]^{|n-1}$.
 - (b) State and prove Parseval's theorem for discrete time Aperiodic signals.

UNIT – IV

8 Determine and sketch the magnitude and phase spectrum of $y(n) = \frac{1}{2} [x(n)+x(n-2)]$.

OR

- 9 (a) State sampling Theorem for band-limited signals. What is Aliasing effect?
 - (b) The signal $x(t) = 10 \cos (10\pi t)$ is sampled at a rate 8 samples per second. Plot the amplitude spectrum for $|\Omega| \le 30\pi$. Can the original signal can be recovered from samples.

UNIT – V

- 10 (a) Derive the relation between Laplace transform and Fourier transform of continuous time signal x(t)
 - (b) Use the convolution theorem of Laplace transform to find $y(t) = x_1(t) * x_2(t)$ where $x_1(t) = \cos(4t) u(t)$ and $x_2(t) = \sin(2t) u(t)$.

OR

Find the response of LTI discrete time system specified by the equation: y(n)-(3/2) y(n-1)+(1/2) y(n-2) = 2x(n)+(3/2) x(n-1) if the initial conditions are y(-1)=0, y(-2)=1 and the input $x(n) = (1/4)^n u(n)$.

www.ManaResults.co.in