B.Tech II Year II Semester (R13) Supplementary Examinations December/January 2015/2016 SWITCHING THEORY \& LOGIC DESIGN
(Common to EEE and ECE)
Time: 3 hours
PART - A
(Compulsory Question)
1 Answer the following: (10 X $02=20$ Marks)
(a) State and Prove consensus theorem.
(b) Find the 2's complement of representation of -9 .
(c) Design a XOR gate using minimum number of NAND gates.
(d) Find the minimum number of literals for the following function using 2 variable Karnaugh Map. $F==\sum m(1)+d(3) . \quad d-$ Don't care .
(e) Write the sum and carry expression for half adder.
(f) Implement the function $\mathrm{F}=\sum \mathrm{m}(0,2)$ using a 2×4 decoder.
(g) Write the characteristic equation for JK Flip-flop.
(h) How many states are there in a n-bit ring counter?
(i) Compare PROM \& PAL.
(j) What is meant by cycle in asynchronous circuits?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Express the following function $\mathrm{F}=\mathrm{xy}+\mathrm{x}$ ' y in a product of max-terms.
(b) Check if NOR gate is associative or not.

OR

3 (a) Show that a positive logic NAND gate is a negative logic OR gate
(b) Obtain the truth table of the following function and express in sum of min-terms and product of maxterms: $F=\left(A^{\prime}+B\right) .\left(B^{\prime}+C\right)$.

UNIT - II
4 Simplify the Boolean function using K map technique:
(a) $F=\pi M(3,4,6,7,11,12,13,14,15)$.
(b) $\mathrm{F}=\sum \mathrm{m}(0,1,2,4,5,6,8,9,12,13,14)$.

OR

7 (a) Implement the function $F=\sum m(0,1,2,4,5,8,11,12,15)$ using $8: 1$ multiplexer.
(b) Design a half subtractor using logic gates.
UNIT - IV

Simplify the following Boolean function using tabulation method:

$$
F=\Sigma m(0,1,2,3,5,7,8,10,14,15) .
$$

UNIT - III

Design a 4-Bit Magnitude comparator using logic gates.

OR

Design a 4 bit universal shift register with neat diagram.
OR
Design a 3 bit synchronous up counter using T Flip-flops.

UNIT - V

Implement the following functions using PLA with three inputs, four product terms and two outputs.

$$
F 1(A, B, C)=\sum m(3,5,6,7), F 2(A, B, C)=\sum m(0,2,4,7) .
$$

'WWW. Manaßrsult's . co.in

Implement the switching function $F=\sum m(1,3,5,7,8,9,14,15)$ by a static hazard free two level AND- OR network.

