B.Tech II Year II Semester (R13) Regular Examinations May/June 2015

SWITCHING THEORY & LOGIC DESIGN

(Common to EEE and ECE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Convert (749)₁₀ to binary number system.
 - (b) Give the importance of Boolean algebra and mention any one property.
 - (c) Convert (24AD)₁₆ to octal number system.
 - (d) What are SOP and POS forms? Give examples.
 - (e) What is an encoder?
 - (f) What are arithmetic circuits and logical circuits?
 - (g) Write differences between sequential and combinational circuits.
 - (h) What is a shift register?
 - (i) Compare three combinational circuits PLA, PAL and ROM.
 - (j) Define race free state assignment.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Convert the following numbers: (i) $(3453)_{10}$ to base 8. (ii) $(6543)_{12}$ to base 16.
 - (b) Find the complement of the function F = A + BC, then show that $F \cdot \overline{F} = 0$ and $F + \overline{F} = 1$.

(OR)

- 3 Reduce the following Boolean expression into the indicated number of literals:
 - (a) $\overline{A} \overline{C} + ABC + A\overline{C}$ to 3 literals.
 - (b) $(\overline{X} \cdot \overline{Y} + \overline{Z}) + Z + XY + WZ$ to 3 literals.
 - (c) $\overline{A} \overline{B} (\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$ to 1 literals.
 - (d) $(\overline{A} + C)(\overline{A} + \overline{C})(A + B + \overline{C}D)$ to 4 lierals.

UNIT - II

4 Convert given expressions in to standard SOP and POS forms:

(i)
$$F(A, B, C) = AC + AB + BC$$
. (ii) $F(A, B, C) = (A + B)(B + C)(A + C)$.

(OR)

- 5 (a) Reduce the following using K-map technique.
 - (i) F(a, b, c, d) = m(5,6,7,12,13) + d(4,9,14,15). (ii) F(a, b, c) = m(2,5,7) + d(1,3).
 - (b) Simplify F(A, B, C, D) = m(2,3,5,7,8,10,12,13) using tabulation method.

UNIT – III

- 6 (a) Write short notes on multiplexer and design a multiplexer 16-to-1 with the help of 4-to-1 multiplexers.
 - (b) Realize a full-adder using only NOR gates and explain.

(OR)

- 7 (a) Draw the figure of encoder & decoder and explain their functions.
 - (b) Write about magnitude comparator and give any one application.

UNIT – IV

- 8 (a) Convert SR-flip-flop into JK flip-flop.
 - (b) Draw the state diagram and state table of the serial binary adder and implement by using D flip-flop.

(OR)

- 9 (a) Design a ripple counter by considering any one example.
 - (b) Explain the method of carry look ahead adder circuit with the help of its logic diagrams.

UNIT – V

- 10 (a) Implement PLA circuit for the following functions F1(A, B, C) = (3,5,6,7), F2 = (A, B, C) = (0,2,4,7).
 - (b) How does a programmable logic device differ from a fixed logic device? What are the primary advantages of using programmable logic devices?

(OR)

- 11 (a) Give the logic implementation of a 32 21 pit 30 was a padecode of a suitable figure.
 - (b) A 12-bit hamming code word containing 8-bits of data and 4-parity bits is read from memory. What is the original data word for these hamming codes? (i) 001111101010. (ii) 101110010110.