B.Tech II Year II Semester (R13) Regular \& Supplementary Examinations May/June 2016

SWITCHING THEORY \& LOGIC DESIGN

(Common to EEE and ECE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Find the values of a \& b in given expression $1776_{10}=a_{8}=b_{2}$.
(b) In the following series, the same integer is expressed in different number systems. Determine the missing member in the series $10000,121,100, ?, 24,22,20, \ldots$..
(c) Does the given: (i) 1110 . (ii) 0111 represent valid $B C D$ codes?, if not represent in $B C D$ codes.
(d) List out differences between Edge-triggering and Level-triggering.
(e) Explain the terms encoder and priority encoder.
(f) Explain the concept of OR gate.
(g) List out Operating characteristics of Flip-Flops.
(h) Clearly differentiate latch, flip-flop and memory.
(i) Explain the terms: (i) Static RAM. (ii) Dynamic RAM.
(j) Differentiate the terms: (i) Synchronous and asynchronous. (ii) Combinational and sequential.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Obtain the canonical and standard forms of given function $f_{1}=\left(\mathrm{AB}^{\prime}(\mathrm{C}+\mathrm{BD})+\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right) \mathrm{C}$.
(b) Explain the concept of weighted and non-weighted codes with examples.

OR

3 (a) Explain the concept of reflection of gray codes.
(b) Implement and realize the given function $f_{2}=((A B+\bar{C}) D+E F)$ using NAND gates only.

UNIT - II

4 (a) Using a K-map convert the given expression into: (i) minimum POS. (ii) standard SOP. $f_{3}=\left(A^{\prime}+B^{\prime}+C+D\right)\left(A+B^{\prime}+C+D\right)\left(A+B+C+D^{\prime}\right)\left(A+B+C^{\prime}+D\right)\left(A^{\prime}+B+C+D^{\prime}\right)\left(A+B+C^{\prime}+D\right) ?$
(b) Define prime implicant With the aid of K-map. Obtain prime implicants for the functions:
(i) $f_{4}(x, y, z)=\sum(0,1,6,7)$.
(ii) $f_{5}(w, x, y, z)=\sum(0,1,2,3,4,8,11)+\Phi(6,9,10)$.

OR
5 (a) Use the tabulation procedure to generate set of prime implicants and to obtain the minimal expression for the function $f_{6}(v, w, x, y, z)=\sum(0,1,3,8,9,13,14,15,16,17,19,24,25,27,31)$.
(b) Minimize the given function $f_{7}=\Sigma(1,5,6,12,13,14)+\varnothing(2,4)$. Hence implement using NOR gates only.

UNIT - III

6 (a) Design and Realize BCD to seven segment decoder using NAND gates only.
(b) Design and Realize a full adder using two half adders and logic gates.

OR

7 (a) Design and Realize $f_{8}=\Pi(0,1,3,7,9,10,11,13,14,15)$ using 8:1 mux.
(b) Design and Realize a full subtractor using NAND logic gates.

Contd. in page 2

UNIT - IV

8 (a) Design and write the analysis of NOR gate SR latch.
(b) Design and Realize the conversion of JK flip-flop to: (i) D flip-flop. (ii) T flip-flop hence mention the differences.

OR
9 (a) What are the functions of a register and explain about parallel-in and parallel-out shift registers in detail using D FF's?
(b) Design and Realize a counter that can count states 0,1,2,3,4,5,6 using D-Flip flop.

UNIT - V

10 (a) Explain about the static hazard and show how it can be removed for the expression $f_{9}(x, y, z)=\sum(2,3,5,7)$.
(b) Design the state diagram for a two-input, two-output synchronous circuit that produces 1 whenever 0101 sequence occurs.

OR
11 (a) Draw the block diagram and explain in detail about the PAL.
(b) Realize $f_{10}=\sum(0,1,3,5,7,9,11,13,14,15)$ using PLA.

