B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

SWITCHING THEORY \& LOGIC DESIGN
(Common to EEE and ECE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks)
(a) Convert the decimal number 250.5 to base 3, base 4.
(b) Write and prove de-Morgan laws.
(c) Implement two input EX-OR gate from 2 to 1 multiplexer.
(d) What are don't cares?
(e) Write the block diagram of 3-8 decoder.
(f) Implement two input EX-OR gate from 2 to 1 multiplexer.
(g) What are the applications of flip flops?
(h) How do you build a latch using universal gates?
(i) Discuss about a bidirectional shift register.
(j) List the advantages of having equivalent states.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Deduce $(70.65)_{8}=()_{2}=()_{16}$
(b) Explain 1's complement representation of signed number.

OR

3 (a) Deduce X from the following:
(i) $(B A O . C)_{16}=(X)_{8}$.
(ii) $(7562)_{8}=(X)_{2}$.
(iii) $(\text { FFE.C })_{16}=(X)_{2}$.
(b) Convert (0011001.0101$)_{2}$ to decimal and octal.

UNIT - II

Implement the following function with NAND gates $F(x, y, z)=\Sigma(0,6)$.
OR
5 Simplify the following using Tabular method.
$F(A, B, C, D, E)=\Sigma(0,2,4,6,9,11,13,15,17,21,25,27,2,31)$

UNIT - III

Draw the logic diagram for 4 bit binary adder-subtractor circuit and explain its operation.
OR
Implement $F(A, B, C, D)=\Sigma(0,1,3,5,6,8,9,11,12,13)$ using $8: 1 M U X$ and explain its procedure.

UNIT - IV

Draw the circuit diagram of MOD-10 counter and explain the operation of it.
OR
With the aid of external logic, convert D type flip flop to a JK flip flop.

UNIT - V

(a) Write the programming table to implement BCD to Z using a PLA.

OR

