B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

SWITCHING THEORY & LOGIC DESIGN

(Common to EEE and ECE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Convert the decimal number 250.5 to base 3, base 4.
 - (b) Write and prove de-Morgan laws.
 - (c) Implement two input EX-OR gate from 2 to 1 multiplexer.
 - (d) What are don't cares?
 - (e) Write the block diagram of 3-8 decoder.
 - (f) Implement two input EX-OR gate from 2 to 1 multiplexer.
 - (g) What are the applications of flip flops?
 - (h) How do you build a latch using universal gates?
 - (i) Discuss about a bidirectional shift register.
 - (j) List the advantages of having equivalent states.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

- 2 (a) Deduce $(70.65)_8 = ()_2 = ()_{16}$
 - (b) Explain 1's complement representation of signed number.

OR

3 (a) Deduce X from the following:

(i) $(BAO.C)_{16} = (X)_8$. (ii) $(7562)_8 = (X)_2$. (iii) $(FFE.C)_{16} = (X)_2$.

(b) Convert $(0011001.0101)_2$ to decimal and octal.

UNIT - II

Implement the following function with NAND gates $F(x, y, z) = \Sigma(0, 6)$.

OF

5 Simplify the following using Tabular method.

 $F(A, B, C, D, E) = \Sigma(0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 2, 31)$

[UNIT - III]

6 Draw the logic diagram for 4 bit binary adder-subtractor circuit and explain its operation.

OR

7 Implement $F(A, B, C, D) = \Sigma(0, 1, 3, 5, 6, 8, 9, 11, 12, 13)$ using 8: 1 *MUX* and explain its procedure.

UNIT - IV

8 Draw the circuit diagram of MOD-10 counter and explain the operation of it.

ΛR

9 With the aid of external logic, convert D type flip flop to a JK flip flop.

UNIT - V

- 10 (a) Write the programming table to implement BCD to Z using a PLA.
 - (b) Describe briefly how PAN Wilded Mindle Republished to 1. 1. 1.

OR

11 Design and implement full adder with PLA.
