B.Tech II Year I Semester (R13) Regular Examinations December 2014
 SWITCHING THEORY \& LOGIC DESIGN

(Common to ECE and EIE)
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: (10 X $02=20$ Marks $)$
(a) If $143_{5}=X_{6}$, then X is.....
(b) Minimum number of two input NAND gates required to implement $Y=A+B C$.
(c) What is the importance of don't care conditions?
(d) SOP of $F(x, y, z)=\sum(2,3,6,7)$.
(e) Implement OR gate using only two input NAND gates?
(f) Draw the block diagram of 2×4 decoder with enable.
(g) Draw the block diagram of sequential circuit using combinational circuit and memory unit.
(h) Draw the logic circuit of flip-flop and truth table using NOR gates.
(i) What is the function of EAROM?
(j) Mention few applications of PLA.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Convert the following to Decimal and then to Octal. (i) 4234_{16} (ii) 10010011_{2}
(b) Implement the function with NOR-NOR logic $Y=A C+B C+A B+D$.

OR
3 (a) Convert the following to Decimal and then to Hexadecimal. (i) 1234_{8} (ii) 11001111_{2}
(b) Find the complement of the following Boolean function and reduce into minimum number of literals.
$\left.Y=B C^{\prime}+A^{\prime} D\right)\left(D B^{\prime}+C D^{\prime}\right.$

UNIT - II

4 Simplify the following Boolean expressions using K-map and implement them using NAND gates.
$F(W, X, Y, Z)=X Z+W^{\prime} X Y^{\prime}+W X Y+W^{\prime} Y Z+W Y^{\prime} Z$
OR
5 Simplifying the following expression using tabulation technique.
$F=\sum m(0,1,2,8,9,15,17,21,24,25,27,31)$
UNIT - III
6 (a) Design a 4 bit binary-to-Gray code converter.
(b) Realize a 2-bit comparator.

OR
7 (a) Design a 4 bit binary-to-BCD code converter.
(b) Design 32:1 Mux using two 16:1 Muxs and one 2:1 Mux.

> UNIT - IV
(a) Draw the circuit of JK flip flop using NAND gates and explain its operation.
(b) Design a 2-input 2-output detector which produces an output 1 every time the sequence 0101 is detected. Implement the sequence detector using JK flip-flops.

OR
(a) Convert S-R flip flop into JK-flip flop. Draw and explain the logic diagram.
(b) A clocked sequential circuit with single input x and single output z produces an output $z=1$ whenever the input x compares the sequence 1011 and overlapping is allowed. Obtain the state diagram, state table and design the circuit with D flip-flops.

UNIT - V

(a) Explain about ROM and PROM.
(b) Design a BCD to excess-3 code converter using ROM.

WWW.ManoaResults.co.in
11 (a) What is Race-free state Assignment? Explain.
(b) Realize $f=\sum m(0,2,3,7,9,11,15,16)$ using ROM.

