B.Tech II Year I Semester (R13) Regular \& Supplementary Examinations December 2015 SWITCHING THEORY \& LOGIC DESIGN
(Common to ECE and EIE)
Max. Marks: 70
Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) State and prove De-Morgans theorem.
(b) What do you understand by universal gate?
(c) Convert the given equation $Y=A B+A C^{\prime}+B C$ into standard SOP form.
(d) Implement the following Boolean equation using only NAND gates $Y=A B+C D E+F$.
(e) Draw the logic diagram of full adder circuit and form the truth table.
(f) What is multiplier? Draw the block diagram of 4-input MUX.
(g) Give the comparison between combinational circuits and sequential circuits.
(h) What is shift register? Give the classification of them.
(i) What are the steps involved in designing an asynchronous sequential circuits?
(j) What are hazards in digital logic circuits? How it can be resolved?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

3 (a) Expand the following Boolean functions $F=x y+x$ 'zin a standard product of maxterm form.
(b) Minimize the following Boolean function: $f(A, B, C, D)=\sum m(5,7,8,10,13,15)+\sum d(0,1,2,3)$.

UNIT - II

4 (a) Simplify the following expression using the K-map for the 4-variable:

$$
Y=A B^{\prime} C+A^{\prime} B C+A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}
$$

(b) Implement the following Boolean function using NOR gates $Y=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$.

OR

(b) $\mathrm{B}(w, x, y, z)=\sum m(0,2,6,7,8,9,12,13,14)$
(c) $\quad C(w, x, y, z)=\sum m(1,3,4,6,10,12,13)$
(d) $D(w, x, y, z)=\sum m(1,3,4,6,9,12,14)$

