B.Tech II Year II Semester (R13) Supplementary Examinations December 2016
 SWITCHING THEORY \& LOGIC DESIGN

(Common to EEE and ECE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Perform (24) ${ }_{10}-(56)_{10}$ using 10 's complement method.
(b) Represent given function $f=A B+A \bar{C}+\bar{B} C$ into standard SOP form.
(c) Minimize the function $\mathrm{F}=\sum \mathrm{m}(2,4,6)$ using K -map.
(d) Realize the function $F=X Y+\bar{X} \cdot \bar{Y}+\bar{Y} \cdot Z$ with NAND and inverter gates.
(e) Implement the function $\mathrm{F}=\sum \mathrm{m}(1,2,3,7)$ using 3:8 decoder.
(f) Implement full subtractor using de-multiplexer.
(g) Draw the logic diagram for 3-stage asynchronous counter with negative edge triggered flip-flops.
(h) Define race around condition in JK flip flop and how it can be eliminated.
(i) Give the logic implementation of a $32 * 4$ bit ROM using decoder of a suitable size.
(j) Define essential hazards in asynchronous circuits.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 Complete the following conversions between the number systems:
(i) $(42)_{5}=()_{7}$
(ii) $(1001100110)_{2}=()_{8}$
(iii) $(7 E 2 C)_{16}=()_{2}$ (iv)(38.65) $)_{10}=()_{2}$

OR

Reduce the Boolean expression:
(i) $F=(\overline{\bar{X}} \cdot \bar{Y}+Z)+Z+X Y+W Z$ into three literals.
(ii) $F=\bar{A} \cdot \bar{C}+A B C+A \cdot \bar{C}+A \cdot \bar{B}$ into two literals.

UNIT - II
Simplifying the given expression using tabulation method:
$F(W, X, Y, Z)=\sum m(1,2,3,5,9,12,14,15)+\sum d(4,8,11)$.
OR
Minimize the following expressions using K-map and realize using logic gates:
(i) $F=\sum m(0,7,8,9,10,12)+d(2,5,13)$
(ii) $\mathrm{F}=\sum \mathrm{M}(0,2,3,8,9,12,13,15)$.

> UNIT - III

Implement the following Boolean function with 8:1 multiplexer:

$$
F(A, B, C, D)=\sum m(0,2,6,10,11,12,13)+\sum d(3,8,14)
$$

OR
7 Design a 8-bit BCD adder using 4-bit binary adder.

UNIT - IV

8 Design divide by 6 counter using T-flip-flops. Write state table and reduce the expression using k-map.

OR

Draw the circuit of JK \& SR flip-flops using NAND gates and explain its operation with the help of its characteristic table.

UNIT - V

Tabulate the PLA programming table for the four Boolean function listed below:

$$
F_{1}(A, B, C, D)=\sum m(3,5,6,7), \quad F_{2}(A, B, C, D)=\sum m(0,2,4,7)
$$

OR
For given machine find the corresponding reduced machine table in standard form.

PS	NS,Z	
	X=0	X=1
A	F,0	B,1
B	G,0	A,1
C	B,0	C,1
D	C,0	B,1
E	D,0	A,1
F	E,1	F,1
G		G,1

