

B.Tech II Year II Semester (R13) Supplementary Examinations December 2016 SWITCHING THEORY & LOGIC DESIGN

(Common to EEE and ECE)

Time: 3 hours

Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Perform $(24)_{10} (56)_{10}$ using 10's complement method.
 - (b) Represent given function $f = AB + A\overline{C} + \overline{B}C$ into standard SOP form.
 - (c) Minimize the function $F=\sum m(2,4,6)$ using K-map.
 - (d) Realize the function $F = XY + \overline{X} \cdot \overline{Y} + \overline{Y} \cdot Z$ with NAND and inverter gates.
 - (e) Implement the function $F=\sum m (1, 2, 3, 7)$ using 3:8 decoder.
 - (f) Implement full subtractor using de-multiplexer.
 - (g) Draw the logic diagram for 3-stage asynchronous counter with negative edge triggered flip-flops.
 - (h) Define race around condition in JK flip flop and how it can be eliminated.
 - (i) Give the logic implementation of a 32*4 bit ROM using decoder of a suitable size.
 - (j) Define essential hazards in asynchronous circuits.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 Complete the following conversions between the number systems:
 - (i) $(42)_5=()_7$ (ii) $(1001100110)_2=()_8$ (iii) $(7E2C)_{16}=()_2$ (iv) $(38.65)_{10}=()_2$ OR
- 3 Reduce the Boolean expression:
 - (i) $F = (\overline{X} \cdot \overline{Y} + Z) + Z + XY + WZ$ into three literals.
 - (ii) $F = \overline{A} \cdot \overline{C} + ABC + A \cdot \overline{C} + A \cdot \overline{B}$ into two literals.

UNIT – II

4 Simplifying the given expression using tabulation method: $F(W,X,Y,Z)=\sum m(1,2,3,5,9,12,14,15)+\sum d(4,8,11).$

OR

5 Minimize the following expressions using K-map and realize using logic gates: (i) $F=\sum m(0,7,8,9,10,12)+d(2,5,13)$ (ii) $F=\sum M(0,2,3,8,9,12,13,15)$.

UNIT – III)

6 Implement the following Boolean function with 8:1 multiplexer: $F(A,B,C,D)=\sum m(0,2,6,10,11,12,13)+\sum d(3,8,14).$

OR

7 Design a 8-bit BCD adder using 4-bit binary adder.

Contd. in page 2

www.ManaResults.co.in

UNIT – IV

8 Design divide by 6 counter using T-flip-flops. Write state table and reduce the expression using k-map. **OR**

9 Draw the circuit of JK & SR flip-flops using NAND gates and explain its operation with the help of its characteristic table.

10 Tabulate the PLA programming table for the four Boolean function listed below: $F_1(A,B,C,D) = \sum m(3,5,6,7)$, $F_2(A,B,C,D) = \sum m(0,2,4,7)$.

OR

11 For given machine find the corresponding reduced machine table in standard form.

PS	NS,Z	
	X=0	X=1
Α	F,0	B,1
В	G,0	A,1
С	B,0	C,1
D	C,0	B,1
Е	D,0	A,1
F	E,1	F,1
G	E,1	G,1

www.ManaResults.co.in