Code: 13A04306

R13

B.Tech II Year I Semester (R13) Supplementary Examinations June 2015

DIGITAL LOGIC DESIGN

(Common to CSE & IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) If $101_3 = X_2$, then X is _____
 - (b) A + AB + ABC + ABCD + BCD + CD + D = ?
 - (c) What is the use of Quine-McCluskey method?
 - (d) Implement an EX-OR gate using 2-input NAND gates.
 - (e) Write the truth table of full subtractor.
 - (f) Implement OR gate using only two input NAND gates.
 - (g) Write the truth table of D-Flip flop.
 - (h) What is the function of synchronous counter?
 - (i) A PLA is similar to ROM in concept. Yes or No? How? Why?
 - (j) Mention few applications of PLA.

PART - B

(Answer all five units, 5 x 10 = 50 Marks)

UNIT - I

- 2 (a) Implement the Boolean function $F = \overline{xy + x'y'} + y'z$ with only AND and NOT gates.
 - (b) Add and multiply the following numbers in the given base without converting to decimal: (i) 123₄ and 321₄ (ii) 567₈ and 234₈.

OF

- 3 (a) Implement the Boolean function F = xy + x'y' + y'z with only OR and NOT gates.
 - (b) Convert the decimal number 246.8 to base 3, base 5 and base 7.

UNIT - II

Give three possible ways to expression function F = A'B'D' + AB'CD' + A'BD + ABC'D with eight or less literals.

OR

Boolean expression BE + B'DE' is a simplified version of the A'BE + BCDE + BC'D'E + A'B'DE' + B'C'DE'. Are there any don't care conditions? If so what are they.

UNIT - III

- 6 (a) What is the function of Half adder? Draw and explain various implementations.
 - (b) Explain about Half subtractor.

OR

- 7 (a) What is the function of binary multiplier? Explain.
 - (b) Design a combinational circuit that accepts a three bit number and generates an output binary number equal to the square of the input number.

UNIT - IV

- 8 (a) Draw the basic flip flop circuit with NAND gates. Explain its operation.
 - (b) What is state reduction? Explain with a suitable example.

OR

- 9 (a) Explain the working of clocked RS flip flop with the help of truth table.
 - (b) Design a BCD counter with JK flip flops.

UNIT - V

- 10 (a) Explain about ROM and PROM.
 - (b) Draw the basic circuit of the RTM NOR cate Explain the eperation o. in
- 11 (a) Design a BCD toexcess-3 code converter using ROM.
 - (b) Draw the basic circuit fo the DTL NAND gate. Explain the operation.