B.Tech II Year I Semester (R13) Supplementary Examinations June 2016 DIGITAL LOGIC DESIGN

(Common to CSE \& IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Draw the truth table of the function $F=x y+x y^{\prime}+y^{\prime} z$
(b) What is the advantage of 2 's complement representation of data?
(c) What are universal logic gates, realize AND, OR gates using universal gates?
(d) Given the two binary numbers $\mathrm{X}=1010100$ and $\mathrm{Y}=1000011$, perform the subtraction: (i) $\mathrm{X}-\mathrm{Y}$. (ii) Y - X using 2's complements.
(e) Give comparisons between combinational and sequential logic circuits.
(f) Construct the full adder circuit using two half adders.
(g) Write the difference between latches and flip-flops.
(h) Write the difference between synchronous and asynchronous counters.
(i) Write a short note on programmable array logic.
(j) Give the comparison between PROM and PLA.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 (a) Convert (9 B 2.1 A) Hexadecimal to its decimal equivalent
(b) Convert (4310)5 to decimal
(c) Convert (4021.2) $)_{5}$ to its equivalent decimal
(d) Convert 0.640625 decimal numbers to its octal equivalent

OR
3 Reduce the following Boolean Expressions to the indicated number of literals:
(a) $A^{\prime} C^{\prime}+A B C+A C^{\prime}+A B^{\prime}$ to two literals.
(b) $\left(X^{\prime} Y^{\prime}+Z^{\prime}\right)+Z+X Y+W Z$ to three literals.
(c) $A^{\prime} B\left(D^{\prime}+C D\right)+B\left(A+A^{\prime} C D\right)$ to one literal.

UNIT - II

Simplify the following Boolean function, using five variable maps:

$$
F(A, B, C, D, E)=\sum(0,1,4,5,16,17,21,25,29)
$$

OR

5 Simplify the following Boolean function F , together with don't-care conditions d , and then express the simplified function in sum-of-minterms form:

$$
F(A, B, C, D)=\sum(0,6,8,13,14) \quad d(A, B, C, D)=\sum(2,4,10)
$$

6 Design a combinational circuit with three inputs and one output:
(a) The output is 1 when the binary value of the inputs is less than or equal to 3 .the output is 0 otherwise.
(b) The output is 1 when the binary value of the inputs is an even number.
(c) The output is 1 when the binary value of the inputs is an odd number.

OR
7 (a) Design a 4-bit adder-subtractor circuit and explain the operation in detail.
(b) Explain the functionality of a multiplexer.

Contd. in page 2
www. ManaResults.co.in

UNIT - IV

8 Explain the working of the following:
(a) J-K flip-flop.
(b) S-R flip-flop.
(c) D-flip-flop.

OR

9 Explain the design of a 4-bit binary counter with parallel load in detail.

UNIT - V

10 (a) Given the 8-bit data word 01011011, generate the 13-bit composite word for the hamming code that corrects single errors and detects double errors.
(b) Write about error detection and correction.

OR
11 Write about the following:
(a) Transistor-transistor logic (TTL)
(b) Emitter-coupled Logic (ECL)
(c) CMOS logic

