B.Tech II Year I Semester (R13) Supplementary Examinations June 2017
 DIGITAL LOGIC DESIGN
 (Common to CSE \& IT)

Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Reduce $A B+(A C)^{\prime}+A B^{\prime} C(A B+C)$.
(b) Simplify the following expression $Y=(A+B)\left(A+C^{\prime}\right)\left(B^{\prime}+C^{\prime}\right)$.
(c) Define K-map? Name its advantages and disadvantages.
(d) Write about universal logic gates and realize XOR gate using Universal gates.
(e) Construct full adder using half adders.
(f) Compare a decoder with a Demultiplexer.
(g) What is race around condition?
(h) Write about bidirectional shift register.
(i) List basic types of programmable logic devices.
(j) Explain about parallel in serial out shift register.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 (a) Convert 1A53 Hexadecimal to its decimal equivalent.
(b) Convert (734) 8 to its hexadecimal equivalent.
(c) Convert 0.640625 decimal number to its octal equivalent.
(d) Convert 0.1289062 decimal number to its hex equivalent.

OR

3 Prove the following identities:
(i) $A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}=C^{\prime}$.
(ii) $A B+A B C+A^{\prime} B+A B^{\prime} C=B+A C$.

UNIT - II

4 A combinational circuit has 3 inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and output $\mathrm{F} . \mathrm{F}$ is true for following input combinations
a) A is False b) A, B, C are True
(i) Write the Truth table for F. Use the convention True $=1$ and False $=0$.
(ii) Write the simplified expression for F in SOP form.
(iii) Write the simplified expression for F in POS form.
(iv) Draw logic circuit using minimum number of 2-input NAND gates.

OR
Simplify the following expression into sum of products using Karnaugh map:

$$
F(A, B, C, D)=\sum(1,3,4,5,6,7,9,12,13)
$$

UNIT - III

Draw and explain the working of a carry-look ahead adder.

OR

7 (a) Design a 4-bit adder-subtractor circuit and explain the operation in detail.
(b) Explain the functionality of a decoder.

Contd. in page 2
www.ManaResults.co.in

Construct a JK flip-flop using a D flip-flop, a two-to-one-line multiplexer, and an inverter. OR
Define a register. Construct a shift register from S-R flip-flops. Explain its working.

UNIT - V

10 (a) Compare PLA with PROM.
(b) What is ROM? List the different types of ROMs.

> OR

11 Write about the following:
(a) CMOS logic.
(b) Digital logic circuits.

