PART - A

(Compulsory Question)

1
Answer the following: (10 $\times 02=20$ Marks $)$
(a) Convert the following numbers to decimal: (i) (1010.011) $)_{2}$. (ii) (630.4) ${ }_{8}$.
(b) Simplify the following Boolean function to a minimum number of literals: $x y+x^{\prime} z+y z$.
(c) Simplify the Boolean function: $F=x^{\prime} y z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y^{\prime} z$
(d) Write graphic symbols for NAND gate.
(e) Implement OR gate using NAND gate.
(f) Implement OR gate using multiplexer.
(g) Show characteristic equation of JK-FF.
(h) What are the applications of shift register?
(i) Define PAL and PLA.
(j) Compare TTL and CMOS logic.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) With a neat block diagram, explain digital computer.
(b) Express the Boolean function $F=x y+x^{\prime} z$ in a product of maxterms form.

OR

3 (a) Explain switching circuit that demonstrates binary logic.
(b) Discuss digital logic families.

UNIT - II

4 (a) Simplify the Boolean function using k-map:
(i) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,4,5,6,8,9,12,13,14)$.
(ii) $F=A^{\prime} B^{\prime} C^{\prime}+B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}+A B^{\prime} C^{\prime}$
(b) Implement following function using NAND gates: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,6)$.

OR
5
Implement the following function using NOR gates: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,6)$.

UNIT - III

6 (a) Realize the function $\Sigma \mathrm{m}(0,3,5,6,7)$ using $8: 1$ multiplexer.
(b) With neat diagram, explain decimal adder.

OR
7 (a) With neat diagram, explain 3 to 8 line decoder.
(b) Implement a full-adder circuit with a decoder and two OR gates.

UNIT - IV
8 (a) With a neat diagram, explain master slave JK Flip Flop.
(b) Explain clocked RS flip-flop.

OR

9 Design a 3-bit MOD-5 synchronous counter using JK-FFs.

UNIT - V

(a) A combinational circuit is defined by the functions:
$F_{1}(A, B, C)=\Sigma(3,5,6,7)$
$F_{2}(A, B, C)=\Sigma(0,2,4,7)$
Implement the circuit with a PLA having 3 inputs, four product term and two inputs.
(b) Explain CMOS as inverter.

WWW. ManaPôsults.co.in
11 (a) With a neat diagram, explain TTL.
(b) Explain logic construction of a $32 \times 4 \mathrm{ROM}$.

