# B. Tech II Year II Semester (R13) Supplementary Examinations December/January 2015/2016 

 ELECTROMAGNETIC THEORY \& TRANSMISSION LINES(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ( $10 \times 02=20$ Marks)
(a) Express unit vectors of cylindrical coordinates in terms of unit vectors of rectangular coordinates with help of suitable diagram.
(b) Given the potential field, $V=2 x^{2} y-5 z$, find the electric field intensity $\vec{E}$ at point $P(-4,3,6)$.
(c) State and explain Biot-Savart's law.
(d) There are two current loops placed apart and are carrying $\mathrm{I}_{1}$ \& $\mathrm{I}_{2}$ respectively. Give the expression for magnetic force on current loop 1 due to current loop 2.
(e) A parallel - plate capacitor with plate area of $5 \mathrm{~cm}^{2}$ and plate separation of 5 mm has a voltage $36 \pi \sin 1000 t \mathrm{~V}$ applied to its plates. Calculate the displacement current assuming $\varepsilon_{\mathrm{r}}=2$ of the medium between the plates.
(f) State the two boundary conditions for the magnetic fields at the interface of two different media.
(g) Let us consider two perfect dielectric media $1 \& 2$ with their intrinsic impedances $\eta_{1}=100 \Omega \& \eta_{2}=$ $300 \Omega$ respectively. If the maximum amplitude of incident electric field intensity (in medium1) $E_{1}^{+}=100 \mathrm{~V} / \mathrm{m}$, determine amplitude of the transmitted electric field intensity $E_{2}^{+}$.
(h) What is skin depth? Give the expression for skin depth in case of good conductors.
(i) Define: (i) A losses line. (ii) A distortionless line.
(j) A certain microstrip line has fused quartz $\left(\varepsilon_{r}=3.8\right)$ as a substrate. If the ratio of line width to substrate thickness is $\frac{w}{h}=4.5$, determine effective relative permittivity of the substrate.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 (a) Derive the expression for Electric field intensity $(\vec{E})$ at any point due to finite length line charge with suitable sketches.
(b) A plane at $y=-5$ carries a surface charge of $15 n C / m^{2}$. If a line $x=0, z=2$ carries charge $10 \Pi n C / m$, calculate the electric flux density $(\vec{D})$ at $(1,1,1)$ due to the charge distributions. Assume free space.

## OR

3 (a) Obtain the expression for electric field intensity $\vec{E}$ at a far point due to a dipole located at the origin.
(b) Given the potential field $V=50 \sin \theta / \mathrm{r}^{2} V$ in free space, determine whether potential V satisfies Laplace's equation or not. Justify the statement.

## UNIT - II

4 (a) State Ampere's circuital law. Apply this law to determine magnetic field intensity $\vec{H}$ at any point in free space due to (i) An infinite line current. (ii) An infinite current sheet.
(b) A strait solid wire segment carrying a current $2 \hat{a}_{y} A$ extends from a point $(0,1,2)$ to another point $(0,4,2)$ in free space. This wire is subjected to the magnetic field of an infinite current filament lying along the $z$ - axis and carrying 25 A in the $\hat{a}_{z}$ direction. Find the vector torque on the wire segment about an origin at a point $(0,0,2)$.

## OR

5 (a) Establish the relationship between magnetic energy and the magnetic field intensity.
(b) One infinite current filament of 10 A lies on y -axis along $\hat{a}_{y}$ \& another infinite current filament of 20 A lies
 Contd. in page 2

## UNIT - III

6 Derive all the Maxwell's equations for time varying fields from the fundamental principles of electromagnetic fields.

## OR

7 (a) Express the Maxwell's equations in phasor form and give their word statements.
(b) The region $z<0$ contains a perfect dielectric for which $\varepsilon_{\mathrm{r}_{1}}=2.5$, while the region $z>0$ is characterized by $\varepsilon_{\mathrm{r}_{2}}=4$. If $\vec{E}_{1}=-30 \widehat{a}_{x}+50 \hat{a}_{y}+70 \hat{a}_{z} \mathrm{~V} / \mathrm{m}$, find the electric flux density in the region 2 .

## UNIT - IV

8 (a) Derive the Helmholtz's equation using electric field intensity for lossy dielectrics from the Maxwell's equations \& solve the same in rectangular coordinates to obtain the expression for electric field intensity.
(b) In nonmagnetic medium $\vec{E}=4 \sin \left(2 \pi \times 10^{7} t-0.8 x\right) \hat{a}_{z} \mathrm{~V} / \mathrm{m}$. Find the time averaged power carried by the wave.

## OR

9 (a) State and prove the Poynting theorem. Give its word statement.
(b) For a copper coaxial cable, let $\mathrm{a}=2 \mathrm{~mm}, \mathrm{~b}=6 \mathrm{~mm}$ and thickness $\mathrm{t}=1 \mathrm{~mm}$. Calculate the resistance of 2 m length of the cable at 100 MHz . Assume that the conductivity of copper material is $5.8 \times 10^{7} \mathrm{mho} / \mathrm{m}$.

## UNIT - V

10 (a) Derive the expression for input impedance of a transmission line when it is terminated by a load.
(b) A distortionless line has $Z_{0}=60 \Omega$, attenuation constant a $=20 \mathrm{mNp} / \mathrm{m}$, signal velocity $u=1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the primary parameters of the transmission line at 100 MHz .

OR
11 (a) Explain the importance of Smith chart with all its details.
(b) A 30 ohm lossless transmission line has $Z_{0}=50 \Omega$ operating at 2 MHz is terminated with a load $Z_{L}=60+j 40 \Omega$. If the signal velocity on the line is $60 \%$ of velocity of light, then find the reflection coefficient and input impedance.

