Code: 13A04403

R13

B.Tech II Year II Semester (R13) Supplementary Examinations December/January 2015/2016

ELECTROMAGNETIC THEORY & TRANSMISSION LINES

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Express unit vectors of cylindrical coordinates in terms of unit vectors of rectangular coordinates with help of suitable diagram.
 - (b) Given the potential field, $V = 2x^2y 5z$, find the electric field intensity \vec{E} at point P(-4,3,6).
 - (c) State and explain Biot-Savart's law.
 - (d) There are two current loops placed apart and are carrying I₁ & I₂ respectively. Give the expression for magnetic force on current loop 1 due to current loop 2.
 - (e) A parallel plate capacitor with plate area of 5 cm² and plate separation of 5 mm has a voltage $36\pi\sin 1000t$ V applied to its plates. Calculate the displacement current assuming $\epsilon_r=2$ of the medium between the plates.
 - (f) State the two boundary conditions for the magnetic fields at the interface of two different media.
 - (g) Let us consider two perfect dielectric media 1 & 2 with their intrinsic impedances $\eta_1 = 100 \Omega \& \eta_2 = 300 \Omega$ respectively. If the maximum amplitude of incident electric field intensity (in medium1) $E_1^+ = 100 \, V/m$, determine amplitude of the transmitted electric field intensity E_2^+ .
 - (h) What is skin depth? Give the expression for skin depth in case of good conductors.
 - (i) Define: (i) A losses line. (ii) A distortionless line.
 - (j) A certain microstrip line has fused quartz ($\epsilon_r = 3.8$) as a substrate. If the ratio of line width to substrate thickness is $\frac{w}{h} = 4.5$, determine effective relative permittivity of the substrate.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

[UNIT – I]

- 2 (a) Derive the expression for Electric field intensity (\vec{E}) at any point due to finite length line charge with suitable sketches.
 - (b) A plane at y=-5 carries a surface charge of $15 \, nC/m^2$. If a line x=0, z=2 carries charge $10\Pi \, nC/m$, calculate the electric flux density (\vec{D}) at (1, 1, 1) due to the charge distributions. Assume free space.

OR

- 3 (a) Obtain the expression for electric field intensity \vec{E} at a far point due to a dipole located at the origin.
 - (b) Given the potential field $V = 50\sin\theta/r^2 V$ in free space, determine whether potential V satisfies Laplace's equation or not. Justify the statement.

UNIT – II

- 4 (a) State Ampere's circuital law. Apply this law to determine magnetic field intensity \vec{H} at any point in free space due to (i) An infinite line current. (ii) An infinite current sheet.
 - (b) A strait solid wire segment carrying a current $2 \hat{a}_y$ A extends from a point (0,1,2) to another point (0,4,2) in free space. This wire is subjected to the magnetic field of an infinite current filament lying along the z axis and carrying 25 A in the \hat{a}_z direction. Find the vector torque on the wire segment about an origin at a point (0,0,2).

OR

- 5 (a) Establish the relationship between magnetic energy and the magnetic field intensity.
 - (b) One infinite current filament of 10 A lies on y-axis along \hat{a}_y & another infinite current filament of 20 A lies on z-axis along $-\hat{a}_z$. Finally Wagnetic filad nor supplied that \hat{a}_y is 5). CO \hat{a}_y

Contd. in page 2

Code: 13A04403

(UNIT – III)

Derive all the Maxwell's equations for time varying fields from the fundamental principles of electromagnetic fields.

OR

- 7 (a) Express the Maxwell's equations in phasor form and give their word statements.
 - (b) The region z < 0 contains a perfect dielectric for which $\varepsilon_{r_1} = 2.5$, while the region z > 0 is characterized by $\varepsilon_{r_2} = 4$. If $\vec{E}_1 = -30\,\hat{a}_x + 50\hat{a}_y + 70\hat{a}_z\,V/m$, find the electric flux density in the region 2.

UNIT - IV

- 8 (a) Derive the Helmholtz's equation using electric field intensity for lossy dielectrics from the Maxwell's equations & solve the same in rectangular coordinates to obtain the expression for electric field intensity.
 - (b) In nonmagnetic medium $\vec{E} = 4 \sin(2\pi \times 10^7 t 0.8x) \hat{a}_z V/m$. Find the time averaged power carried by the wave.

OR

- 9 (a) State and prove the Poynting theorem. Give its word statement.
 - (b) For a copper coaxial cable, let a = 2 mm, b = 6 mm and thickness t = 1 mm. Calculate the resistance of 2 m length of the cable at 100 MHz. Assume that the conductivity of copper material is 5.8×10^7 mho/m.

UNIT – V

- 10 (a) Derive the expression for input impedance of a transmission line when it is terminated by a load.
 - (b) A distortionless line has $Z_0 = 60 \,\Omega$, attenuation constant a = 20 mNp/m, signal velocity $u = 1.8 \times 10^8 \, m/s$. Find the primary parameters of the transmission line at 100 MHz.

OR

- 11 (a) Explain the importance of Smith chart with all its details.
 - (b) A 30 ohm lossless transmission line has $Z_0 = 50\,\Omega$ operating at 2 MHz is terminated with a load $Z_L = 60 + j40\,\Omega$. If the signal velocity on the line is 60% of velocity of light, then find the reflection coefficient and input impedance.
