

B.Tech II Year II Semester (R13) Supplementary Examinations December 2016 ELECTROMAGNETIC THEORY & TRANSMISSION LINES

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) List out the applications of 'Smith chart'.
 - (b) List out the properties of dielectric.
 - (c) Write the phase shift constant formula for good dielectric.
 - (d) Define reflection coefficient.
 - (e) Define Ampere's Circuital Law.
 - (f) List out the applications of Gauss's Law.
 - (g) Write the Brewster angle formula.
 - (h) Define Biot-Savart Law.
 - (i) Write the equation for $\nabla \times A$ in spherical coordinate system.
 - (j) Write the formula for Poisson's equation.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Derive an expression for static electric field due to infinite line charge using Coulomb's law.
 - (b) If $D = 3y^2 \overline{a}_x + 3x^2 y \overline{a}_y + 5 \overline{a}_z C/m^2$. Find the total charge enclosed within the region 0 < x, y, z < 2 by evaluating one or more surface integrals.

OR

- 3 (a) Define potential? Derive an expression for electric field due to a dipole.
 - (b) Obtain the expression for stored energy density in Electrostatic field.

UNIT – II

- 4 (a) Using Ampere's circuital law, find H due to infinite sheet of current.
 - (b) Derive the expression for the energy stored in a magnetic field.

OR

- 5 (a) Explain the concept of scalar and vector magnetic fields.
 - (b) Given that H = $20\rho^2 \overline{a}_{\phi}$ A/m. (i) Determine J. (ii) Current enclosed by the circular surface $\rho = 1$, $0 < \phi < 2\pi$, z = 0.

UNIT – III

- 6 (a) Discuss about inconsistency of Ampere's law and Displacement current density.
 - (b) List out Maxwell's Equations in point form for Time varying fields and word statements.

OR

- 7 (a) Assume a homogeneous material of infinite extent with $\sigma = 0$, $\varepsilon = 2 \times 10^{-10}$ F/m and $\mu = 1.25 \times 10^{-5}$ H/m. Let E = 400cos(109t- β z) ax V/m. Use Maxwell's equations and find D, B and H.
 - (b) Drive the boundary conditions for time varying fields.

Contd. in page 2

www.ManaResults.co.in

9

UNIT – IV

- 8 (a) State and prove Poynting theorem.
 - (b) Derive the expression for reflection coefficient for oblique incidence on a perfect dielectric in parallel polarization.

OR

- (a) Determine the intrinsic impedance in free space for a uniform plane wave.
 - (b) Define polarization. Write a short note on circular polarization.

UNIT – V

- 10 (a) Determine the reflection coefficient and voltage standing wave ratio when:
 - (i) Z_L = short circuit.
 - (ii) Z_L = open circuit.
 - (iii) Z_L = purely reactive.
 - (iv) $Z_L = Z_O$.
 - (b) A 30 m long lossless line with $Z_0 = 50 \Omega$ operating at 2 MHz is terminated with a load $Z_L = 60+j40 \Omega$. If v = 0.6C on the line, find: (i) Reflection coefficient. (ii) Standing wave ratio. (iii) Input Impedance.

OR

- 11 (a) Derive the expression for input impedance of a transmission line.
 - (b) Explain the technique of single stub matching in a lossless transmission line.

www.ManaResults.co.in