Code: 13A04409

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

PRINCIPLES OF COMMUNICATIONS

(Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- Define radio communication and mention types. (a)
- What is impulse noise? Write some sources of it. (b)
- SSB is suitable for speech signals and not for video signals. Why? (c)
- Compare Wideband FM and Narrowband FM. (d)
- What do you mean by sampling period and nyquist rate? (e)
- What is meant by pulse duration and pulse position modulation? (f)
- Illustrate the slope overload and granular noise in Delta modulation and how can these are avoided. (g)
- Draw the block diagram of coherent receiver and mention disadvantages. (h)
- (i) Define the terms information and entropy.
- What is convolutional code? How is it different from block codes? (j)

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

2 Draw the basic block diagram of electrical communication system and explain function of each block.

3 Define the types of noises and explain any two in detail.

[UNIT - II]

4 Explain the generation of SSB-SC signal in detail.

OR

5 Describe the frequency and phase modulations mathematically and perform comparison.

(UNIT - III)

6 State and prove the sampling theorem. For band limited signals in time domain.

7 Explain the time division multiplexing with neat block diagram and write the need of asynchronous multiplexing.

[UNIT - IV]

State in your own words the principle of quantization and obtain the expression for the signal to 8 quantization noise for the case of a uniform quantizer.

What is the principle of DPSK? Explain DPSK scheme at the transmitter and receiver with example. 9

UNIT - V

A discrete memory less source has an alphabet of seven symbols whose probabilities of occurrence are 10 given below:

Symbol	S_0	S ₁	S_2	S_3	S_4	S_5	S_6
Probability	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625

Compute two different Huffman codes for this alphabet. In one case, move a combined symbol in the coding procedure as high as possible, and in second case, move it as low as possible. Find the variance of average code-word length over the ensemble of letters.

What is block code? The generator matrix of a (6, 3) block code is given below. Find all code vectors and 11 Write the parity check matrix H. ManaResults.co.in

 $G = |1 \ 0 \ 0 \ 1 \ 1|$

 $G = |0 \ 1 \ 0 \ 1 \ 0 \ 1|$

 $G = [0\ 0\ 1\ 1\ 1\ 0]$
