B.Tech III Year I Semester (R13) Regular \& Supplementary Examinations November/December 2016 DIGITAL COMMUNICATION SYSTEMS

(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1
Answer the following: (10 X $02=20$ Marks)
(a) Mention different types of quantization errors associated with Delta modulation system.
(b) What is differential pulse code modulation?
(c) Draw the block diagram of a modified duobinary signaling scheme.
(d) List the merits of eye pattern in pulsed binary data transmission system.
(e) State the properties of matched filter receiver.
(f) Obtain the signal constellation of 8 PSK modulated symbols.
(g) Write all the important performance parameters considered for deciding a particular digital modulation technique.
(h) Consider a binary sequence 011010. Draw the QPSK modulated waveform.
(i) What is the need of error correcting code?
(j) The parity check matrix for a (7,4) linear block code is given by: $\mathrm{H}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$. Find the codeword for the input message combination of 1010.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

A linear delta modulator is designed to operate on speech signals limited to 3.4 kHz . The specifications of the modulator are as follows. Sampling rate $=10 f_{\text {Nyquist }}$, Where $f_{\text {Nyquist }}$ is the Nyquist rate of the speech signal, step size $\Delta=100 \mathrm{mV}$. The modulator is tested with a 1 kHz sinusoidal signal. Determine the maximum amplitude of this test signal required to avoid slope over load distortion.

OR
Explain with neat block diagram, encoding of analog signals using Pulse Code modulation technique.

UNIT - II

What is intersymbol interference? Explain the behavior of intersymbol interference for the baseband binary PAM transmission system.

OR

Explain the operation of duo-binary encoding scheme with neat block diagram and necessary mathematical equations. Also perform the encoding and decoding of binary sequence using duobinary signalling scheme.

UNIT - III

Explain with neat block diagram the structure and behavior of Matched filter receiver.
OR
State and prove Gram-Schmidt orthogonalization procedure.
UNIT - IV
Derive the expression for bit error probability of a binary phase shift keying modulation.
OR
Compare the transmission power, bandwidth and bit error rate parameters of various digital modulation techniques.

UNIT - V

Explain the operation of convolution code generation by using an appropriate shift register and modulo2 adder configurations.
 $C 4=d 1+d 2+d 3, C 5=d 1+d 2$ and $C 6=d 1+d 3$. Construct the appropriate generator matrix for this code and all possible code words.

