R13

Max. Marks: 70

Code: 13A04503

B.Tech III Year I Semester (R13) Supplementary Examinations June 2016

LINEAR IC APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define differential amplifier.
 - (b) Draw the op-amp equivalent circuit.
 - (c) Write the properties of ideal op-amp.
 - (d) What is the compensating network?
 - (e) Draw the op-amp integrator circuit.
 - (f) Write about the first order and second order filter.
 - (g) How the name implies 555 timers.
 - (h) Write the applications of PLL.
 - (i) Write the disadvantage of weighted resistor DAC.
 - (j) List out the ADC techniques.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

[UNIT - I]

- 2 (a) List and compare the different configurations of differential amplifier.
 - (b) What is level translator? Explain the necessity of level translator stage in cascading differential amplifiers.

OR

- 3 (a) Explain the term slew rate and write the importance in op-amp circuits.
 - (b) For the given dual-input, balanced-output differential amplifier $R_C = 2.2 \text{ k}\Omega$, $R_E = 4.7 \text{ k}\Omega$, $R_{\text{in1}} = R_{\text{in2}} = 50 \Omega$, $V_{CC} = +10 \text{ V}$, $V_{EE} = -10 \text{ V}$, $\beta_{DC} = \beta_{AC} = 100$ and $V_{BE} = 0.71 \text{ V}$, determine I_{CQ} , V_{CEQ} , r_{e} , voltage gain, input and output resistances.

[UNIT – II]

- 4 (a) Compare voltage series and voltage shunt feedback circuits.
 - (b) Derive the expression for closed-loop gain.

OR

- 5 (a) Write the difference between compensating and uncompensating networks.
 - (b) The op-amp non-inverting amplifier has the following parameters R_1 = 1 k Ω , R_f = 10 k Ω , A = 2,00,000, R_i = 2 M Ω , R_o = 75 Ω , supply voltages V_{CC} = +15 V, V_{EE} = -15 V. Determine A_f , R_{if} & R_{of} .

UNIT - III

- 6 (a) Derive the expression for 3 input summing amplifier with circuit diagram.
 - (b) What is the need of Current to Voltage Converter?

OR

- 7 (a) The op-amp non-inverting summing circuit has the following parameters V_{CC} = +15 V, V_{EE} = -15 V, $R = R_1$ = 1 k Ω , R_f = 2 k Ω , V_1 = +2 V, V_2 = -3 V, V_3 = +4 V. Determine the output voltage V_0 .
 - (b) Write the design steps of the second order low pass filter and draw its circuit.

UNIT - IV

8 Draw and explain the operation of Wein bridge oscillator and write its frequency expression

OR

- 9 (a) How to design the function generator
 - (b) The monostable circuit used as divide by 2 network. The input frequency of trigger signal is 2 kHz, if $C = 0.01 \mu F$, calculate the value of R_A .
- Draw and explain the successive approximation ABC. TS.CO.IN

OF

11 Draw and explain in detail about R-2R DAC.
