B.Tech III Year I Semester (R13) Supplementary Examinations June 2016
 LINEAR IC APPLICATIONS

(Electronics and Communication Engineering)
Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Define differential amplifier.
(b) Draw the op-amp equivalent circuit.
(c) Write the properties of ideal op-amp.
(d) What is the compensating network?
(e) Draw the op-amp integrator circuit.
(f) Write about the first order and second order filter.
(g) How the name implies 555 timers.
(h) Write the applications of PLL.
(i) Write the disadvantage of weighted resistor DAC.
(j) List out the ADC techniques.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) List and compare the different configurations of differential amplifier.
(b) What is level translator? Explain the necessity of level translator stage in cascading differential amplifiers.

OR
3 (a) Explain the term slew rate and write the importance in op-amp circuits.
(b) For the given dual-input, balanced-output differential amplifier $R_{C}=2.2 \mathrm{k} \Omega, R_{E}=4.7 \mathrm{k} \Omega, R_{\text {in } 1}=R_{\text {in2 }}=$ $50 \Omega, \mathrm{~V}_{C C}=+10 \mathrm{~V}, \mathrm{~V}_{E E}=-10 \mathrm{~V}, \beta_{\mathrm{DC}}=\beta_{\mathrm{AC}}=100$ and $\mathrm{V}_{\mathrm{BE}}=0.71 \mathrm{~V}$, determine $\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}, \mathrm{r}_{\mathrm{e}}$, voltage gain, input and output resistances.

UNIT - II

4 (a) Compare voltage series and voltage shunt feedback circuits.
(b) Derive the expression for closed-loop gain.

OR

5 (a) Write the difference between compensating and uncompensating networks.
(b) The op-amp non-inverting amplifier has the following parameters $R_{1}=1 \mathrm{k} \Omega, R_{f}=10 \mathrm{k} \Omega, A=2,00,000$, $R_{i}=2 M \Omega, R_{0}=75 \Omega$, supply voltages $V_{C C}=+15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}$. Determine $A_{f}, R_{i f} \& R_{o f}$.

6 (a) Derive the expression for 3 input summing amplifier with circuit diagram.
(b) What is the need of Current to Voltage Converter?

OR
7 (a) The op-amp non-inverting summing circuit has the following parameters $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}=\mathrm{R}_{1}$ $=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=2 \mathrm{k} \Omega, \mathrm{V}_{1}=+2 \mathrm{~V}, \mathrm{~V}_{2}=-3 \mathrm{~V}, \mathrm{~V}_{3}=+4 \mathrm{~V}$. Determine the output voltage V_{o}.
(b) Write the design steps of the second order low pass filter and draw its circuit.

UNIT - IV
(a) How to design the function generator
(b) The monostable circuit used as divide by 2 network. The input frequency of trigger signal is 2 kHz , if $C=0.01 \mu \mathrm{~F}$, calculate the value of R_{A}.

Draw and explain in detail about R-2R DAC.

