B.Tech III Year II Semester (R13) Regular Examinations May/June 2016

DIGITAL SIGNAL PROCESSING

(Common to ECE and EIE)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define energy & power signals.
 - (b) Consider a finite duration sequence $X(n) = \{2, 4, 0, 3\}$. Resolve the sequence into sum of weighted impulses.
 - (c) What is FFT?
 - (d) Draw the direct form-II realization of two people resonator from Goertzel algorithm.
 - (e) Define signal flow graph.
 - (f) Draw the direct form-I realization structure of IIR filter.
 - (g) What is realization.
 - (h) Distinguish between Recursive & non recursive realization.
 - (i) Define the terms decimation and Interpolation.
 - (j) What are the applications of multi rate signal processing?

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Explain about classification of discrete time systems briefly.

OR

- 3 (a) Discuss about linearity, periodicity properties of DFT.
 - (b) Perform circular convolution of two sequences given by $X_1(n) = \{1, 2, 3, 4\}$ $X_2(n) = \{-1, 3, -5, 7\}$.

UNIT – II

4 Implement the decimation in time FFT algorithm for N = 16.

OR

Write short notes on the following: (i) Split-radix FFT. (ii) Applications of Goertzel algorithm. (iii) Quantization errors. (iv) Radix -4 FFT Algorithm. (v) Chirp-Z transforms.

UNIT – III

6 Obtain the direct form-I, direct form-II, cascade and parallel realization for the following system:

$$Y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$$

OR

7 (a) Determine the direct form-II and transposed direct form –II for the given system:

$$Y(n) = \frac{1}{2}y(n-1) - \frac{1}{4}y(n-2) + x(n) + x(n-1)$$

(b) An FIR filter is given by the difference equation:

$$y(n) = 2x(n) + \frac{4}{5}x(n-1) + \frac{3}{2}x(n-2) + \frac{2}{3}x(n-3)$$
. Determine its Lattice form.

UNIT - IV

8 Design a digital Butterworth filter satisfying the following constrains:

$$0.707 \le |\mathsf{H}(\mathsf{e}^{\mathsf{jw}})| \le 1 \qquad \mathsf{f}$$

for $0 \le \omega \le \pi/2$

$$|H(e^{JW})| \le 0.2$$
 for $3\pi/2 \le \omega \le \pi$

With T = 1sec using bilinear transformation.

OR

9 Design a filter with:

$$Hd(e^{jw}) = e^{-j3w} - \pi/4 \le w \le \pi/4$$

= 0 $\pi/4 < w \le \pi/4$ using Hamming window with N = 7.

UNIT – V

10 Sketch the following signals:

$$X_1(n) = n, n > 0$$

= 0 otherwise

$$X_2(n) = n^2, n > 0$$

= 0 otherwise

Also sketch developed and vite political persons of a factor of '2'.

11 With the help of block diagram explain in detail about multistage implementation of sampling rate conversion by rational factor I/D.
