R13

Max. Marks: 70

B.Tech II Year I Semester (R13) Supplementary Examinations June 2016

DISCRETE MATHEMATICS

(Common to CSE and IT)

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) What are basic logical operations? Define them.
 - (b) Find the minimum number of persons selected so that at least eight of them will have birthdays on the same day of week.
 - (c) Find the dual of the wx(y'z + yz') + w'x'(y' + z)(y + z') of the Boolean expression.
 - (d) Define Lattices as algebraic system.
 - (e) State Lagrange's theorem.
 - (f) What is the coefficient of $x^3 y^2 z^2$ in $(x + y + z)^9$?
 - (g) State the principle of mathematical induction.
 - (h) Find the generating function of the sequence $a_n = n, n \ge m$.
 - (i) Find a chromatic number of a bipartite graph.
 - (j) Define Binary tree. Give an example.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

2 Show that the arguments: (i) $p \xrightarrow{p} q$ $\therefore q$

(ii) $p \xrightarrow{p} q$

 \therefore q is valued.

OR

3 How many people among 200,000 are born at the same time (hour, minute, seconds)?

UNIT – II

- 4 (a) State and prove fundamental theorem on relations.
 - (b) Let $A = \{0,1,2,3,4\}$. Find the equivalence classes of the equivalence relation $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$ defined on A. Draw digraph of R and write down the partition of A induced by R.

OR

5 The direct product of any two distributive lattices is a distributive lattice.

UNIT – III

6 Let G be a group and let $Z = \{a: ax = xa \text{ for all } x \in G\}$ is a centre of the group G. Then prove that 'z' is a normal subgroup of G.

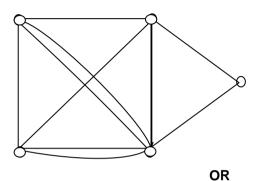
OR

7 A person writes letters to five friends and addresses on the corresponding envelops. In how many ways can the letters be placed in the envelops so that: (i) All the letters are in the wrong envelops. (ii) At least two of them are in the wrong envelops.

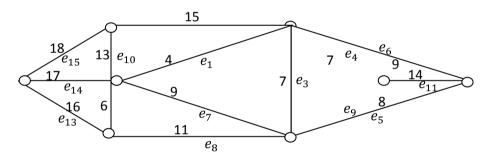
Contd. in page 2

www.ManaResults.co.in

UNIT – IV


8 Prove $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$ for $m, n \ge 1$ by induction.

OR


9 Using Generating function solve the recurrence relation $a_n - a_{n-1} - 6a_{n-2} = 0$ given $a_0 = 2$, $a_1 = 1$.

UNIT – V

10 Write an algorithm for getting an Euler line in Euler graph. Using this algorithm. Test whether the graph given has an Euler line or not?.

11 Using Kruskal's algorithm, obtain a minimal tree for the graph given in below.

www.ManaResults.co.in

Page 2 of 2