B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016 DISCRETE MATHEMATICS

(Common to CSE and IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: (10 $\times 02=20$ Marks)
(a) Negate the following statements:
(i) Ottawa is a small town.
(ii) Every city in Canada is clean.
(b) In a set of four numbers chosen from $\{1,2,----6\}$ prove that there are two numbers whose sum is even.
(c) Represent the relation $\mathrm{R}=\{(1,2),(1,3),(1,4),(2,3),(4,4)\}$ by a digraph.
(d) Give an example of Lattice which is not distributive.
(e) Find the order of the elements of $\left(\mathrm{Z}_{8},+_{8}\right)$.
(f) Prove the sum of the elements in the $\mathrm{n}^{\text {th }}$ row of a Pascal's triangle is $2^{\mathrm{n}-1}$.
(g) Give an inductive definition of the set $\mathrm{P}=\{2,3,4--------\}=\mathrm{N}-\{0,1\}$
(h) Show that $\mathrm{f}\langle x, y\rangle=\mathrm{x}^{\mathrm{y}}$ is a primitive recursive function.
(i) Give an example of a connected graph that has Neither an Euler line non a Hamiltonian circuit.
(j) Arrange the numbers $30,36,17,20,22,32,58,19,15,50,112$ as a totally ordered set by building a binary search tree.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 Establish the validity of the argument:
$[(P \rightarrow Q) \wedge(\neg \mathrm{RVS}) \wedge(\mathrm{PVR})] \rightarrow[\neg \mathrm{Q} \rightarrow \mathrm{S}]$
Using the rule of contradiction.

OR

3 (a) A relation ' S ' is defined by a $S b$. If $a^{2}+b^{2}=4$ represent them as sets, find $D(S)$ and $R(S)$ if S is a relation from.
(i) From N to N .
(ii) From N to Z^{+}.
(iii) From Z^{+}to N .
(iv) From Z to N .
(v) From N to Z .
(b) Does the rule given by $f(x)=\frac{1}{x^{2}-2}$. (i) From R to R. (ii) From Q to Q.

> UNIT - II

4 (a) Find the transitive closure of the Relation R which is represented by:
$\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$
(b) Represent the relation a R b if $\mathrm{a} \leq \mathrm{b}$ in $\{1,2,3,4\}$ by their matrix and digraph.

OR

5 (a) Show that every chain is a distributive Lattice.
(b) Write the following Boolean expressions in an equivalent sum of products canonical form in three variables $\mathrm{x}_{1}, \mathrm{x}_{2} \& \mathrm{x}_{3}$.
(i) $\mathrm{x}_{1} * \mathrm{x}_{2}$. WWW.ManaResults.Co.in
(ii) $\mathrm{x}_{1} \oplus \mathrm{x}_{2}$.

UNIT - III

6 Show that there are only two non isomorphic groups of order 4.

> OR

7 (a) Show that the set M of all matrices of the form $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ where $n \varepsilon z$, is a semigroup under multiplication and it is isomorphic to $(\mathrm{z},+)$.
(b) Show that the set M of all 3×3 matrices of the form $\left[\begin{array}{lcc}1 & m & n \\ 0 & 1 & p \\ 0 & 0 & 1\end{array}\right]$ where $m, n, p \varepsilon z$ is a semigroup under multiplication. Is it a monoid?

UNIT - IV

8 (a) Prove $\mathrm{F}_{\mathrm{m}+\mathrm{n}}=\mathrm{F}_{\mathrm{m}-1} \mathrm{~F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{m}} \mathrm{F}_{\mathrm{n}+1}$ for $\mathrm{m}, \mathrm{n} \geq 1$ by induction.
(b) Show that $\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by 3 .

OR

9 (a) Show that the function $\mathrm{f}\langle x, y\rangle=x+y$ is primitive recursive.
(b) Show that if $\mathrm{f}\langle x, y\rangle$ defines the remainder upon division of y by x , then it is a primitive recursive function.

UNIT - V

10 (a) Show that a connected graph G with ' n ' vertices has at least $n-1$ edges.
(b) Define K - regular graph. Give examples of 2 - regular, 3 - regular, 4 - regular graphs.

OR
11 (a) Express the algebraic expression $(2 x-3 y)(x+2 y)^{3}$ in polish and reverse polish notation.
(b) Using Kruskal's algorithm, obtain a minimal spanning tree for the graph given:

