(Computer Science and Engineering)
Time: 3 hours
PART - A
(Compulsory Question)

1 Answer the following: (10 $\times 02=20$ Marks $)$
(a) Give the mathematical definition of the grammar.
(b) What is context sensitive grammar.
(c) Describe the language generated by the regular expression : $(b+a b)^{*}(\epsilon+a)$.
(d) State the Arden's theorem.
(e) Identify the type of the grammar: $S \rightarrow a S a|b S b| c$.
(f) Show that the following CFG is ambiguous.

$$
S \rightarrow S S \mid a
$$

(g) Write the definition of push down automata (PDA).
(h) Give any two examples of languages that are accepted by PDA.
(i) Define multi- tape turing machine.
(j) What is unrestricted grammar? Give an example.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Construct the Grammar for palindrome of binary numbers
(b) Construct the Grammar for the language $a^{n} b^{n}, n>0$

OR
3 Design a minimal DFA over the alphabet $\Sigma=\{0,1,2\}$ to accept the language $L=\{w \mid w \cong 0 \bmod 4\}$.
UNIT - II
4 State the pumping lemma for regular expressions.
(a) (i) Show that $L=\left\{a^{i^{2}} / i \geq 1\right\}$ is not regular by using pumping Lemma.
(b) (ii) Show that $L=\left\{a^{i} b^{j} / i, j \geq 1, i \neq j\right\}$ is not regular by using pumping lemma.

OR
5 Prove that the family of regular languages is closed under the following operations:
(a) Union.
(b) Intersection.
(c) Complementation.
(d) Reversal.
(e) Concatenation.

UNIT - III

(a) Construct a PDA to accept the language $L=\left\{W C W^{R} / W \in(a, b)^{+}\right\}$by the empty stack.
(b) Construct a PDA to accept the language $L=\left\{a^{n} b^{2 n}, n \geq 1\right\}$ by the final state.

OR
Define the following terms: (i) Useless symbol. (ii) Null - production. (iii) Unit production. Remove Null - productions in the following grammar.

$$
\begin{aligned}
& S \rightarrow A B a C \\
& A \rightarrow B C \\
& B \rightarrow b \mid \epsilon \\
& C \rightarrow D \mid \epsilon \\
& D \rightarrow \epsilon
\end{aligned}
$$

OR

Define Chomsky Normal Form, Convert the following grammar into CNF:
$S \rightarrow b A|a B ; A \rightarrow b A A| a S|a ; B \rightarrow a B B| b S \mid a$.
UNIT - IV

Prove that " L is accepted by a PDA M_{1} by empty store, if and only if L is accepted by a PDA M_{2} by final state".

WWW. Man tivtexults. Co.in
Prove that the problem that a string w is accepted by a DFA M is decidable.
OR
Construct linear bounded automata for the following context-sensitive language $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.

