B.Tech II Year II Semester (R13) Regular Examinations May/June 2015
 FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 hours
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) What is a string? How to concatenate two strings?
(b) What is context free grammar?
(c) Describe the language generated by the regular expression: $(a+b)^{*} a a a(a+b)^{*}$.
(d) Let r_{1} be the regular expression representing the language L_{1}, r_{2} be the regular expression representing the language L_{2}, what is the language represented by the regular expression $r_{2}+r_{1}$.
(e) Identify the language generated by context free grammar: $S \rightarrow(S)|()| S S$.
(f) Define ambiguous grammar with example.
(g) Can push down automata accept the regular language?
(h) Give any two examples of languages that are accepted by PDA.
(i) Define linear bounded automata.
(j) Define multi-tape Turing machine.

> PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Construct the language generated by grammar $S \rightarrow a S b / \varepsilon$.
(b) Construct the language generated by the grammar $S \rightarrow a C a ; C \rightarrow a C a / b$.

OR
Design a minimal DFA over the alphabet $\Sigma=\{0,1\}$ to accept the language $L=\{w \mid w \cong 0 \bmod 3\}$.

UNIT - II

4 State and prove Arden's theorem.
OR
5 (a) Write the identities of regular expressions.
(b) Draw the NFSA to accept the languages generated by $a a^{*} b b^{*}$

UNIT - III

6 (a) Remove unit productions in the following grammar:

$$
\begin{aligned}
S & \rightarrow A B a C \\
A & \rightarrow B C \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow D \mid \epsilon \\
D & \rightarrow \epsilon
\end{aligned}
$$

(b) Remove unit productions in the following grammar:

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow A \\
& A \rightarrow c A d \\
& A \rightarrow c d
\end{aligned}
$$

OR
Define Chomsky normal form, convert the following grammar into CNF:

$$
S \rightarrow b A|a B ; A \rightarrow b A A| a S|a ; B \rightarrow a B B| b S \mid a .
$$

UNIT - IV

Construct a PDA that accepts the language generated by the following grammar: $S \rightarrow a B ; B \rightarrow b A / b ; A \rightarrow a B$.
OR
Construct a PDA to accept the language $L=\left\{W C W^{R} / W \in(a, b)^{+}\right\}$by the empty stack.

UNIT - V

Design a Turing machine to accept the language $=\left\{a^{n} b^{n}, n \geq 1\right\}$. Show an ID for the string 'aaabbb' with tape symbols.

> www.Manaesults.co.in

Write short notes on: (i) Instantaneous Description of TMs. (ii) Recursively Enumerable and Recursive Languages.

