B.Tech II Year II Semester (R13) Regular \& Supplementary Examinations May/June 2016

FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Define the terms symbol, string and Language.
(b) Write short notes on proof by contradiction.
(c) Differentiate between Klean closure and positive closure.
(d) If R_{1} and R_{2} are two regular languages, $\mathrm{R}_{1} \cup \mathrm{R}_{2}$ and $\overline{R_{1}}$ and $\overline{R_{2}}$ are also regular languages, prove by DeMorgans rules that $R_{1} \cap R_{2}$ is also a regular language.
(e) For the grammar $E \rightarrow E+E, E \rightarrow E * E, E \rightarrow i d$, construct a parse tree (using leftmost derivation) for the string id*id*id+id.
(f) List the set operators under which CFLs are NOT CLOSED. Justify your answer.
(g) Explain how a stack is integrated into the functioning of a PDA.
(h) Give the formal definition of a PDA.
(i) Explain the functioning of a counter machine.
(j) State the closure properties of recursive languages.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Construct the NFA for the RE $(0+1)^{*}(00+11)(01)(0+1)^{*}$.
(b) For the following ε-NFA, construct its equivalent NFA without ε transitions.

(a) Construct a Moore machine that takes strings comprising 0,1,2 and 3 as input (base 4 number) whose decimal equivalent modulo 7 is given as output.
(b) How do we determine equivalence of two DFA? Explain with an example

UNIT - II

4 (a) State and prove Arden's Theorem
(b) List the closure properties of Regular Languages

OR
Find the regular expression corresponding to the following DFA.

Contd. in page 2
www. ManaResults.co.in

6 Convert the following grammar into GNF:

$$
X \rightarrow Y Z \quad Y \rightarrow Z X|a \quad Z \rightarrow X Y| b
$$

OR
7 (a) Explain the following terms with example:
(i) Ambiguous Grammar.
(ii) Left Recursion.
(iii) Chomsky's Normal Form.
(b) Discuss the closure properties of Context free languages.

UNIT - IV

8 (a) Construct a PDA that recognizes strings (over alphabet 0 and 1) that contain equal number of 0 s and 1s.
(b) Construct a grammar in Chomsky's Normal Form that is equivalent to:

$$
\mathrm{A} \rightarrow \mathrm{aBCb}, \mathrm{~B} \rightarrow \mathrm{bC}, \mathrm{C} \rightarrow \mathrm{Cb}, \mathrm{C} \rightarrow \mathrm{~b} .
$$

OR

9 (a) Construct a PDA that recognizes strings of $W^{r}{ }^{r}$ form, where W^{r} is the reverse of W, and strings comprise of 0 s and 1 s . Give the instantaneous of the PDA also.
(b) Construct a PDA that recognizes strings of type $0^{n} 1^{m} \mid n>m$ using final state.

UNIT - V
10 (a) Explain the concept of Universal Turing Machine.
(b) Find a PCP solution for the following sets.

A	B
ab	aba
ba	abb
b	ab
abb	b
a	bab
OR	

Construct a Turing Machine that computes the product of two numbers, represented in Unary form.

