R13

Code: 13A05404

B.Tech II Year II Semester (R13) Regular & Supplementary Examinations May/June 2016

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Define the terms symbol, string and Language.
- (b) Write short notes on proof by contradiction.
- (c) Differentiate between Klean closure and positive closure.
- (d) If R_1 and R_2 are two regular languages, R_1 U R_2 and $\overline{R_1}$ and $\overline{R_2}$ are also regular languages, prove by DeMorgans rules that $R_1 \cap R_2$ is also a regular language.
- (e) For the grammar E→E+E, E→E*E, E→id, construct a parse tree (using leftmost derivation) for the string id*id*id+id.
- (f) List the set operators under which CFLs are NOT CLOSED. Justify your answer.
- (g) Explain how a stack is integrated into the functioning of a PDA.
- (h) Give the formal definition of a PDA.
- (i) Explain the functioning of a counter machine.
- (j) State the closure properties of recursive languages.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 (a) Construct the NFA for the RE $(0+1)^*(00+11)$ (01) $(0+1)^*$.
 - (b) For the following ε -NFA, construct its equivalent NFA without ε transitions.

OR

- 3 (a) Construct a Moore machine that takes strings comprising 0, 1, 2 and 3 as input (base 4 number) whose decimal equivalent modulo 7 is given as output.
 - (b) How do we determine equivalence of two DFA? Explain with an example

UNIT – II

- 4 (a) State and prove Arden's Theorem
 - (b) List the closure properties of Regular Languages

OR

5 Find the regular expression corresponding to the following DFA.

Contd. in page 2

www.ManaResults.co.in

Code: 13A05404

(UNIT – III)

6 Convert the following grammar into GNF:

 $X \rightarrow YZ \quad Y \rightarrow ZX \mid a \quad Z \rightarrow XY \mid b$

OR

- 7 (a) Explain the following terms with example:
 - (i) Ambiguous Grammar.
 - (ii) Left Recursion.
 - (iii) Chomsky's Normal Form.
 - (b) Discuss the closure properties of Context free languages.

UNIT - IV

- 8 (a) Construct a PDA that recognizes strings (over alphabet 0 and 1) that contain equal number of 0s and 1s
 - (b) Construct a grammar in Chomsky's Normal Form that is equivalent to:

 $A \rightarrow aBCb, B \rightarrow bC, C \rightarrow Cb, C \rightarrow b.$

OR

- 9 (a) Construct a PDA that recognizes strings of WW^r form, where W^r is the reverse of W, and strings comprise of 0s and 1s. Give the instantaneous of the PDA also.
 - (b) Construct a PDA that recognizes strings of type 0ⁿ1^m | n>m using final state.

UNIT – V

- 10 (a) Explain the concept of Universal Turing Machine.
 - (b) Find a PCP solution for the following sets.

Α	В
ab	aba
ba	abb
b	ab
abb	b
а	bab

OR

11 Construct a Turing Machine that computes the product of two numbers, represented in Unary form.
