B.Tech II Year II Semester (R13) Supplementary Examinations December 2016
 FORMAL LANGUAGES \& AUTOMATA THEORY

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Give the formal definition of Finite Automata.
(b) Write the regular expressions for the following languages:
(i) All the strings of a's and b's where every string ends with 'abab'
(ii) All the strings which begin or end with either 00 or 11 over the set $\{0,1\}$
(c) Define the language for the following Context Free Grammars.
(i) $\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid 01$
(ii) $S \rightarrow a S a|b S b| \varepsilon$
(d) List any four closure properties of regular languages.
(e) Differentiate Recursive and Recursive enumerable languages.
(f) Explain briefly about two stack PDA.
(g) Show that the following grammar is ambiguous:

S->aSbS|bSaS| ε
(h) Construct NFA for the following regular expression: $(00+11)^{*}$.
(i) Briefly explain about Chomsky hierarchy of languages.
(j) State Post Correspondence Problem (PCP).

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 Construct DFA for the following Languages:
(i) The set of all strings over $\{0,1\}$ having even number of 0 's and odd number of 1 's.
(ii) The set of all strings over $\{0,1\}$ where evrey string doesnot ending with 011.

OR
Construct a Moore machine to determine residue mod 5 for a binary number and convert it into its equivalent Mealey machine.

UNIT - II

State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

OR
State pumping lemma for regular languages and prove that the following languages are not regular by using pumping lemma.
(i) $L=\left\{a^{p} \mid\right.$ where p is a prime $\}$.
(ii) $L=\left\{a^{n} b^{n} \mid n>0\right\}$.

UNIT - III

Convert the following Context Free Grammar to Chomsky Normal Form.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bA} \mid \mathrm{aB} \\
& \mathrm{~A} \rightarrow \mathrm{bAA}|\mathrm{aS}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{aBB}|\mathrm{bS}| \mathrm{b}
\end{aligned}
$$

OR
7 What is meant by left recursion in CFG and check the following grammar is left recursive or not if it is, remove it.

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{\star} \mathrm{F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow \text { id }
\end{aligned}
$$

UNIT - IV

Convert the following PDA into its equivalent CFG.
The transition function is defined as:

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, 0, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, 0 \mathrm{Z}_{0}\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, 0,0\right)=\left\{\left(\mathrm{q}_{0}, 00\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, 1,0\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\} \\
& \delta\left(\mathrm{q}_{1}, 1,0\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\} \\
& \delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{2}, \varepsilon\right)\right\}
\end{aligned}
$$

UNIT - V

What is Turing Machine? Specify its model and construct TM for the language.

$$
L=\left\{a^{m} b^{n} a^{m+n} \quad \mid n \geq 1 m \geq 0\right\}
$$

OR
Explain various types of Turing Machines with examples.

Design a PDA whose language is $\{\mathrm{w} \mid \mathrm{w}$ contains balanced parenthesis $\}$.
OR

