B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

DESIGN \& ANALYSIS OF ALGORITHMS

(Common to CSE and IT)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) What is meant by Asymptotic notation?
(b) What is an articulation point in a graph?
(c) What is a comparison tree?
(d) What is an optimal solution?
(e) Explain 8 -queens problem.
(f) What is bi-connected component?
(g) Define reduction source problem.
(h) How many spanning trees can be generated from a graph with 4 nodes?
(i) What is the difference between 0/1 knapsack and ordinary knapsack?
(j) What is the worst case complexity in quick sort, why?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 The pre-order and post-order sequences of a binary tree do not uniquely define binary tree. Justify your answer.

OR

If matrices $A=\left[\begin{array}{llll}9 & 4 & 6 & 7 \\ 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \\ 5 & 3 & 0 & 2\end{array}\right] \quad B=\left[\begin{array}{llll}7 & 6 & 2 & 1 \\ 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \\ 3 & 2 & 4 & 7\end{array}\right]$. Implement Strassen's matrix multiplication on A and B.

4 (a) Write an algorithm of Prim's minimum spanning tree.
(b) Find the optimal solution of the knapsack instance $n=7, M=15,(p 1, p 2, \ldots p 7)=(10,5,15,7,6,18,3)$ and (w1, w2,w7) $=(2,3,5,7,1,4,1)$.

OR

5 (a) Define merging and purging rules in 0/1 knapsack problem.
(b) Write an algorithm for all pairs shortest path. Explain with an example.

UNIT - III

6 What is graph coloring? Write an algorithm for it and explain with an example.
OR
$7 \quad$ Write an algorithm to find articulation point in a graph.
UNIT - IV
8 What is bounding? Explain the following with an example.
(a) Job sequencing with deadlines.
(b) FIFO branch and bound.
(c) LC branch and bound.

OR
Write an algorithm for finding transitive closure with an example.

UNIT - V

 OR
State and prove Cook's theorem.

