

B.Tech II Year II Semester (R13) Supplementary Examinations December 2016 DESIGN & ANALYSIS OF ALGORITHMS (Common to CSE and IT)

(Common to CSE and IT)

Time: 3 hours

Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Define average case efficiency of an algorithm.
 - (b) What is the output of selection sort after the 2nd iteration given the following sequence of numbers: 16, 3, 46, 9, 28 and 14?
 - (c) Write any two characteristics of Greedy Algorithm.
 - (d) Define principle of optimality.
 - (e) Define spanning tree.
 - (f) Explain state space tree.
 - (g) Explain branch and bound technique.
 - (h) Define transitive closure.
 - (i) Define tractable and intractable problems.
 - (j) Explain NP-complete problem.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Explain various asymptotic notations used in algorithm design in detail.

OR

3 Discuss the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.

UNIT – II

4 Provide optimal solution for the fractional knapsack problem given below using Greedy algorithm. Consider the maximum weight as 6 kg.

Item	1	2	3	4	5
Value (Rs)	25	20	15	40	50
Weight (kg)	3	2	1	4	5
					OR

5 Explain multistage graph with an example.

UNIT – III)

6 What is an articulation point? Explain the procedure to determine bi-connected components in the graph with example.

OR

7 What is a Hamiltonian cycle? Explain Hamiltonian cycle algorithm with an example.

UNIT – IV

8 Discuss knapsack problem using branch and bound.

OR

9 Describe the procedure for computing transitive closure using lower bound theory.

10 Discuss NP-Hard and NP-complete problems with suitable examples.

OR

11 Explain the procedure to the War welling Sates man fordblem tusting. NE-completedness.