B.Tech I Year (R13) Supplementary Examinations June 2016 MATHEMATICS - I
 (Common to all branches)

Answer the following: (10 $\times 02=20$ Marks $)$
(a) Write the differential equation obtained by eliminating ' c ' from $y=c x+c^{2}-c^{3}$.
(b) The general solution of $\left(D^{3}-D\right) y=0$.
(c) Expand e^{x} about $x=1$.
(d) Find the radius of curvature at $p=(\sqrt{ } 2, \sqrt{ } 2)$ on the curve $x^{2}+y^{2}=4$.
(e) Find asymptotes of the curve $x^{3}+y^{3}=3 a x y$.
(f) Find the area bounded by the curve $\sqrt{ } x+\sqrt{ } y=1$ and the coordinate axes.
(g) Find $L\left\{e^{-t} \sinh t\right\}$.
(h) Find the inverse Laplace transform of $\frac{e^{-3 s}}{s+2}$
(i) Find the greatest value of the directional derivative of $\phi(x, y, z)=2 x^{2}-y-z^{4}$ at (2, $\left.1,-1\right)$.
(j) Find the volume of a region bounded by a surface S.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2
Solve : $x \log x \frac{d y}{d x}+y=2 \log x$

OR

Solve by the method of variation of parameters $\left(D^{2}+1\right) y=x \sin x$.

UNIT - II

A rectangular box open at the top is to have a volume of 32 cft . Find the dimensions of the box requiring least material for its construction.

OR

Find the envelope of $x \cos ^{3} \theta+y \sin ^{3} \theta=a$ for different values of θ.

UNIT - III

Find the area of the solid generated by the rotating the loop of the curve $r^{2}=a^{2} \cos 2 \theta$ about the initial line.

OR

Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
UNIT - IV
Find the inverse transform of $\frac{1}{s^{2}\left(s^{2}+a^{2}\right)}$
OR
$9 \quad$ Solve $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=3 t e^{-t}$ given that $x(0)=4, \frac{d x}{d t}=0$ at $t=0$.
WWW . ManaRestults. CO . in Contd. in page 2

UNIT - V

Evaluate $\int_{c}\left[\left(2 x y^{3}-y^{2} \cos x\right) d x+\left(1-2 y \sin x+3 x^{2} y^{2}\right) d y\right]$ where c is the ac of the parabola $2 x=\pi y^{2}$ from $(0,0)$ to $\left(\frac{\pi}{2}, 1\right)$

OR

11 Verify Gauss divergence theorem for $\bar{F}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}$ taken over the rectangular parallelepiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
$\star * * * *$

