B.Tech I Year (R13) Regular Examinations June/July 2014

MATHEMATICS - I

(Common to all branches)

Time: 3 hours Max. Marks: 70

Part – A (Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ M})$

- (a) Solve $\frac{d^2y}{dx^2} + 1.5 \frac{dy}{dx} + 0.5y = 0.$
- (b) Solve $(e^y + 1) \cos x dx + e^y \sin x dy = 0$.
- (c) Find Taylor's series expansion for $\tan^{-1} \left(\frac{y}{x} \right)$ about (1, 1).
- (d) Find the radius of the curvature at the origin for the curve $2x^4 + 3y^4 + 4x^2y + xy y^2 + 2x = 0$.
- (e) Find the asymptote of $y = \frac{x^2 + 2x 1}{x}$.
- (f) Evaluate $\int_0^1 \int_0^x e^{x+y} dy dx$.
- (g) Find $L\{Cos^2t\}$.
- (h) Find $L^{-1} \left\{ \frac{e^{-3s}}{s+2} \right\}$
- (i) Show that $\nabla \cdot (r^n \bar{r}) = (n+3)r^n$.
- (j) State Stokes theorem.

Part – B Answer all five units (5 X 10 = 50 M)

UNIT - I

A mass m suspended from one end of a spring is subjected to a periodic force $f = f_0 \, sinat$ in the direction of its length. The force f is measured positive vertically downwards and at time t = 0, m is at rest. If the spring constant is K, prove that the displacement of m at time t is given by $x = \frac{f_0}{m(p^2 - a^2)} \left(sinat - \frac{a}{p} sinpt \right) \text{ where } p^2 = \frac{x}{m}. \text{ Neglect the damping effects.}$

OF

3 Solve $(x^2D^2 + xD + 1)y = logxsin(logx)$.

UNIT - II

Discuss the maxima and minima of $f(x, y) = \sin x \sin y \sin(x + y)$.

OR

Prove that the evolute of the cycloid x = a(t - sint), y = a(1 - cost) is another cycloid.

UNIT - III

Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the straight line y = x.

OR

7 Evaluate $\int_1^e \int_1^{\log y} \int_1^{e^x} \log z \, dz \, dx \, dy$.

UNIT - IV

8 Using convolution theorem solve the IVP:

 $y''(t) + 3y'(t) + 2y(t) = e^{-t}, \quad y(0) = 0, \quad y'(0) = -1$

Find $L^{-1}\left\{\frac{s(a^2-b^2)}{s^4(a^2+b^2)s^2+a^2b^2}\right\}$.

9

10 For a solenoidal vector \bar{f} , prove that $\nabla x(\nabla x(\nabla x(\nabla x\bar{f}))) = \nabla^4 \bar{f}$.

OR

Evaluate $\int_{C} [(2xy^3 - y^2cosx)dx + (1 - 2ysinx + 3x^2y^2)dy]$ where C is the arc of the parabola $2x = \pi y^2$ from (0,0) to ManaResults.co.in