B.Tech I Year (R13) Supplementary Examinations December/January 2014/2015 MATHEMATICS - I
 (Common to all branches)

Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
Answer the following: ($10 \times 02=20$ Marks $)$
(a) Solve $\left(D^{3}+1\right) y=0$.
(b) Solve $\frac{\mathrm{dy}}{\mathrm{dx}}=(\mathrm{x}+\mathrm{y}+2)^{2}=0$.
(c) Expand $\mathrm{e}^{\mathrm{x}+\mathrm{y}}$ in a neighborhood of $(1,1)$.
(d) Find the envelop of the family of curves $\mathrm{y}=\mathrm{mx}+\mathrm{m}^{4}$ for different values of ' m '.
(e) Find the asymptotes of $y^{3}-x^{2} y+2 y^{2}+4 y+x$.
(f) Find the quadrature of the rectangular hyperbola $\mathrm{y}=\mathrm{k}^{2} / \mathrm{x}$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.
(g) $\mathcal{L}\left\{\mathrm{e}^{\text {at }} \cosh b t\right\}=$
(h) $\mathcal{L}^{-1}\left\{\frac{e^{-3 s}}{s^{2}}\right\}=$
(i) Prove that $\overline{\mathrm{a}} \cdot\left(\nabla \frac{1}{\mathrm{r}}\right)=-\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{r}}}{\mathrm{r}^{3}}, \overline{\mathrm{a}}$ is a constant vector.
(j) State Green's theorem.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

 The deflection of a strut of length ℓ with one end built - in and the other end subjected to the end thrust P , satisfies $\frac{d^{2} y}{d x^{2}}+a^{2} y=\frac{a^{2} R}{p}(\ell-x)$. Find the deflection y of the strut at a distance x from the built - in end.OR
Solve $\left(D^{2}-4 D\right) y=e^{x}+\sin 3 x \cos 2 x$.
UNIT - II
Verify Maclaurin's theorem for $f(x)=(1-x)^{5 / 2}$ with Lagrange form of remainder up to 3 terms with $x=1$.
OR
Find the radius of curvature at any point $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$. Show that it is $2 \frac{(\mathrm{SP})^{3 / 2}}{\sqrt{\mathrm{a}}}$. Where S is the focus of the parabola?

UNIT - III

Find the volume of the solid generated by revolution of the loop of the curve $y^{2}(a-x)=x^{2}(a+x)$ about the x - axis.

OR

Evaluate the integral $\int_{y=0}^{1} \int_{x=y}^{a} \frac{x d x d y}{x^{2}+y^{2}}$.

UNIT - IV

Find the Laplace transform for $f(t)=\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{3}$.
OR
The triangular wave function defined by $f(t)=\left\{\begin{array}{ll}t, & 0<t<a \\ 2 a-t, & a<t<2 a\end{array}\right.$ and $f(t+2 a)=f(t)$. Find Laplace transform of $\mathrm{f}(\mathrm{t})$.

UNIT - V

Find the directional derivative of $\emptyset(x, y, z)=x y+y z+z x$ in the direction of $-2 \bar{i}+\bar{j}+2 \overline{\mathrm{k}}$ at the point $(1,2,0)$.

WWW. ManaResults.Co.in

If $\bar{F}=2 x z \bar{i}-x \bar{j}+y^{2} \bar{k}$ evaluate $\iiint_{V} \bar{F} d v$ where V is the region bounded by the surface $x=0, y=0, x=2, y=$ $6, z=x^{4}, z=4$.

