B.Tech I Year (R13) Supplementary Examinations December/January 2015/2016

MATHEMATICS - II
(Common to EEE, ECE, EIE, CSE and IT)
Time: 3 hours
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Define Rank.
(b) Find the Eigen values of $\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & -5 & 0 \\ 1 & 8 & 1\end{array}\right)$.
(c) $\int_{0}^{3} \frac{x}{2+x} d x$ by using Simpson's $3 / 8$ rule.
(d) Use Newton's Method to find the only real root of the equation $x^{3}-x-1=0$ in two approximations.
(e) What is the example of the Hermitian matrix?
(f) Solve $\frac{d y}{d x}=y \cos x, y(0)=1$ using Taylor series method.
(g) What is the formula for half range cosine series?
(h) Inverse Z transform of $\frac{1}{(z-2)(z-3)}, \quad|z|>3$.
(i) Form the partial differential equation from $z=f\left(x^{2}-y^{2}\right)$.
(j) Eliminate arbitrary constants in $(x-a)^{2}+(y-b)^{2}=k^{2}$, where a, b are constants.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Find P and Q such that the Normal form of $A=\left[\begin{array}{rrr}1 & -1 & -1 \\ 3 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]$ then find Rank of A.
Verify Cayley Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$. And also find the A^{4}.

UNIT - II

Finding the root of $f(x)=e^{-x}(3.2 \sin (x)-0.5 \cos (x))$ that lies between $x=3$ and $x=4$, by using Bisection method.

OR
Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using:
(a) Trapezoidal rule.
(b) Simpson's $1 / 3$ rule.

Contd. in page 2

6 Using Euler's method, find an approximate value of y corresponding to $\mathrm{x}=0.1$, given $\frac{d y}{d x}=\frac{y-x}{y+x^{\prime}}$ $y=1$ at $x=0$.

OR

Find the Fourier series of $f(x)=x^{3}$ in $((-\pi, \pi))$.
UNIT - IV
Find the Fourier transform of $f(x)= \begin{cases}\frac{1}{2 a} & i f|x| \leq a \\ 0 & i f|x|>a\end{cases}$
OR
Solve $U_{n+2}+2 U_{n+1}+U_{n}=n$ with $U_{0}=U_{1}=0$ using Z-Transforms.

UNIT - V

Find the Partial differential equation of all sphere whose centre lie on Z -axis and given by equation $x^{2}+y^{2}+(z-a)^{2}=b^{2}$, and b being constant.

OR
By using method of separation of variables solve the partial differential equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial u^{2}}{\partial x^{2}}$.

