B.Tech I Year (R13) Supplementary Examinations June 2016
 MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE and IT)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Define the rank of a matrix with example.
(b) Show that $A=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a Skew-Hermitian matrix.
(c) Find the sum and product of the Eigen values of the matrix $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2\end{array}\right]$.
(d) Prove that $\mathrm{E} \nabla=\Delta=\nabla \mathrm{E}$.
(e) Construct the difference table if $y(0)=1, y(1)=0, y(2)=1$ and $y(3)=10$.
(f) If $y=a x+b x+c x^{2}$, then write the normal equations to fit the curve.
(g) Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ by Trapezoidal rule.
(h) Find the Fourier series of $f(x)=x$ in $(-\pi, \pi)$.
(i) What is $F_{C}\left\{e^{-a t}\right\}$ and $F_{C}\left\{t e^{-a t}\right\}$
(j) Find $Z\left(n^{2}\right)$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 Reduce the matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$ into Echelon form and hence find its rank.

OR

3 Verify Cayley Hamilton theorem and hence find A^{-1}, where $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$.

UNIT - II

4 (a) Using Newton's forward interpolation formula and the given table of values obtain the value of $f(x)$ when $x=1.4$.

x	1.1	1.3	1.5	1.7	1.9
$f(x)$	0.21	0.69	1.25	1.89	2.61

(b) Using Lagrange's interpolation formula, find $y(10)$ from the following table.

x	5	6	9	11
y	12	13	14	16

OR

5 (a) Fit a straight line to the data given below:

x	1	3	5	7	9
y	1.5	2.8	4.0	4.7	6.0

(b) Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ by using: (i) Simpson's $1 / 3$ rule. (ii) Simpson's $3 / 8$ rule.

Contd. in page 2

UNIT - III

$6 \quad$ Find $y(0.1)$ and $y(0.2)$ using Runge-Kutta $4^{\text {th }}$ order formula given that $y^{\prime}=x^{2}-y$ and $y(0)=1$.

OR

7
Find the Fourier series of the periodic function defined as $f(x)=\left\{\begin{array}{c}-\pi,-\pi<x<0 \\ x, 0<x<\pi\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.

UNIT - IV

8
Find the Fourier transform of $f(x)$ defined by $f(x)=\left\{\begin{array}{ll}1, & |x|<a \\ 0, & |x|>a\end{array}\right.$ and hence evaluate:
(i) $\int_{0}^{\infty} \frac{\sin p}{p} d p$. (ii) $\int_{-\infty}^{\infty} \frac{\sin a p \cdot \cos p x}{p} d p$.

OR

9 (a) Find $Z\left(\cos \frac{n \pi}{2}\right)$ and $Z\left(\sin \frac{n \pi}{2}\right)$.
(b) Find $Z^{-1}\left[\frac{2 z}{(z-1)\left(z^{2}+1\right)}\right]$.

UNIT - V

10 (a) Form a partial differential equation by eliminating the arbitrary function ' f ' from $x y z=f\left(x^{2}+y^{2}+z^{2}\right)$.
(b) Solve by the method of separation of variables $\frac{d u}{d x}=2 \frac{d u}{d t}+u$ where $u(x, 0)=6 e^{-3 x}$.

OR

A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement $y(x, t)$.

