MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE \& IT)
Time: 3 hours
Max. Marks: 70

$$
\begin{gathered}
\text { Part - A } \\
\text { (Compulsory Question) }
\end{gathered}
$$

1 Answer the following: ($10 \times 02=20$ Marks)
(a) Find the Fourier constant bn for $x \sin x$ in $[-\pi, \pi]$, when expressed as a Fourier series.
(b) Find the Fourier series $f(x)=e^{x}$ defined in $[-\pi, \pi]$.
(c) Find $a_{0}, f(\mathrm{x})=|\sin x|,[-\pi, \pi]$.
(d) Write the complete solution of $\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{pq}$.
(e) Eliminate the arbitrary constants a and b from $\mathrm{z}=a x+b y+a^{2}+b^{2}$.
(f) Find the rank of $\left[\begin{array}{rrr}4 & -2 & 2 \\ 5 & 3 & 2 \\ 2 & 4 & 1\end{array}\right]$.
(g) Find the eigen values of the matrix $\left[\begin{array}{rrr}4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1\end{array}\right]$.
(h) Write the condition for $\mathrm{AX}=\mathrm{B}$ is consistent.
(i) Apply Euler's method to solve $y^{\prime}=x+y, y(0)=1$, find $y(1)$.
(j) Discuss the Netwon-Raphson method for convergence.
Part - B
(Answer all five units, $05 \times 10=50$ Marks)

Unit - I

Using Cayley-Hamilton theorem, find the inverse of $A=\left[\begin{array}{rrr}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ and also find A^{-3}.

OR

Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ to the sum of squares form and find the index and signature.

Unit - II

Using Newton's forward interpolation formula, find the polynomial $\mathrm{y}=\tan x$ satisfying the following data. Hence evaluate $\tan (0.12)$ and $\tan (0.28)$

x	0.10	0.15	0.20	0.25	0.30
y	0.1003	0.1511	0.2027	0.2533	0.3093

Dividing the range into 10 equal parts, find the value of $\int_{0}^{\pi / 2} \sin x d x$. Using (i) Trapezoidal rule. (ii) Simpson's 1/3 rd rule.

> Unit - III

Using Taylors series method with first five terms in the expansion find $\mathrm{y}(0.1)$ correct to three decimal places, given that $\frac{d y}{d x}=e^{x}-y^{2}, y(0)=1$.
OR

Given $\mathrm{f}(\mathrm{x})=f(x)=\left\{\begin{array}{cl}-x+1 & \text { for }-\pi \leq x \leq 0 \\ x+1 & \text { for } 0 \leq x \leq \pi\end{array}\right.$. Is the function even or odd? Find the Fourier series for $f(x)$ and deduce the value of $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ \qquad

> Unit - IV

Find the Fourier sine transform of $f(x)=\frac{e^{-a x}}{x}$.

OR

Find: (i) $Z[\sin (3 k+5)]$.
(ii) $Z^{-1}\left[\frac{4 z}{z-a}\right]$ if $|z|<a$.

Unit - V
Form partial differential equations by eliminating arbitrary constants.

Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $\mathrm{U}(\mathrm{x}, 0)=6 e^{-3 x}$.

