B.Tech I Year (R13) Regular Examinations June/July 2014

MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE & IT)

Time: 3 hours

(g)

7

Part – A (Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- (a) Find the Fourier constant bn for $x \sin x$ in $[-\pi, \pi]$, when expressed as a Fourier series.
- (b) Find the Fourier series $f(x) = e^x$ defined in $[-\pi, \pi]$.
- (c) Find a_0 , $f(x) = |\sin x|$, $[-\pi, \pi]$.
- (d) Write the complete solution of z = px + qy + pq.
- (e) Eliminate the arbitrary constants a and b from $z = ax + by + a^2 + b^2$.
- (f) Find the rank of $\begin{bmatrix} 4 & -2 & 2 \\ 5 & 3 & 2 \\ 2 & 4 & 1 \end{bmatrix}$.

Find the eigen values of the matrix
$$\begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \end{bmatrix}$$

- (h) Write the condition for AX = B is consistent.
- (i) Apply Euler's method to solve y' = x + y, y(0) = 1, find y(1).
- (j) Discuss the Netwon-Raphson method for convergence.

Part – B

(Answer all five units, 05 X 10 = 50 Marks)

- 2 Using Cayley-Hamilton theorem, find the inverse of A = $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and also find A⁻³.
- 3 Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4xz$ to the sum of squares form and find the index and signature.

Unit - II

4 Using Newton's forward interpolation formula, find the polynomial
$$y = \tan x$$
 satisfying the following data. Hence evaluate $\tan(0.12)$ and $\tan(0.28)$

х	0.10	0.15	0.20	0.25	0.30
у	0.1003	0.1511	0.2027	0.2533	0.3093
					OR

⁵ Dividing the range into 10 equal parts, find the value of $\int_0^{\pi/2} \sin x \, dx$. Using (i) Trapezoidal rule. (ii) Simpson's 1/3 rd rule.

Unit - III

6 Using Taylors series method with first five terms in the expansion find y(0.1) correct to three decimal places, given that $\frac{dy}{dx} = e^x - y^2$, y(0) = 1.

Given $f(x) = f(x) = \begin{cases} -x + 1 & for - \pi \le x \le 0 \\ x + 1 & for & 0 \le x \le \pi \end{cases}$. Is the function even or odd? Find the Fourier series for f(x) and deduce the value of $\frac{1}{4^2} + \frac{1}{2^2} + \frac{1}{x^2} + \dots$.

The value of
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Unit - IV

- 8 Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$.
- 9 Find: (i) $Z[\sin(3k+5)]$. (ii) $Z^{-1}\left[\frac{4z}{z-a}\right]$ if |z| < a.
- 10 Form partial differential equations by eliminating arbitrary constants. (i) Z = f(x + at) + g(x - at). (ii) $Z = f_1(x) + f_2(y)$. WWW • ManaRegults.co.in
- 11 Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where U(x, 0)= $6e^{-3x}$.

Max. Marks: 70