B.Tech I Year (R13) Supplementary Examinations December/January 2014/2015
 MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE and IT)
Max. Marks: 70

PART - A

(Compulsory Question)

Answer the following: ($10 \times 02=20$ Marks $)$
(a) Find the sine series of $f(x)=k$ in $(0, \pi)$.
(b) If $f(x)=x+x^{2}$ in $-\pi<x<\pi$ then find a_{n}
(c) Obtain the complete solution for $\mathrm{p}+\mathrm{q}=\sin \mathrm{x}+\sin \mathrm{y}$.
(d) Find $a_{0}, f(x)=|\cos x|,(-\pi, \pi)$.
(e) Find P.I of (D2-2DD') $z=x^{3} y$.
(f) State one dimensional heat equation.
(g) Find the Eigen values for the matrix $\left[\begin{array}{ccc}4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1\end{array}\right]$.
(h) Write condition for the system $A X=B$ is consistent.
(i) Find the rank of $\left[\begin{array}{ccc}1 & -9 & 6 \\ 4 & 8 & 5 \\ 7 & 9 & 4\end{array}\right]$.
(j) Using Euler's method find the solution of the initial problem $\frac{d y}{d x}=\log (x+y), y(0)=2$ at $x=0.2$ by assuming $h=0.2$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form. Also specify the matrix of transformation.

OR
State and prove Cayley-Hamilton theorem.

UNIT - II

Find the root of $x \log _{10} x-1.2=0$ by Newton Raphson method corrected to three decimal places.
OR
Evaluate $\int_{0}^{1} x e^{x} d x$ taking 4 intervals. Using (i) Trapezodial rule. (ii) Simpson's $1 / 3$ rd rule.

UNIT - III

Use fourth order Runge-Kutta method to compare y for $\mathrm{x}=0.1$, given $\frac{d y}{d x}=\frac{x y}{1+x^{2}}, y(0)=1$ take $h=0.1$.
OR
Find the Half range Fourier sine series $f(x)=x(\pi-x) \quad 0 \leq x \leq \pi$ and hence deduce that: (i) $\sum \frac{1}{n^{4}}=\frac{\pi^{4}}{960}$.
(ii) $\sum_{n=1} \frac{1}{(2 n-1)^{6}}=\frac{\pi^{6}}{960}$.

UNIT - IV

Find the Fourier cosine transform of $f(x)=e^{-x^{2}}$.
OR
Solve Z-transform $y_{k+1}+\frac{1}{4} y_{k}=\left(\frac{1}{4}\right)^{k},(k \geq 0), y(0)=0$.

UNIT - V

Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(x, 0)=3 \sin (n \pi x), u(x, t)=0, u(a, t)=0$, where $0<$ $x<1, t>0$.

WWW. ManaResults.co. In

A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially in a position given by $y=$ $y_{0} \sin ^{3}(\pi x / l)$. if it is selected from rest from this position, find the displacement $y(x, t)$.

