Code: 13A54302

B.Tech II Year I Semester (R13) Supplementary Examinations June 2016
 MATHEMATICS - III
 (Common to EEE, ECE and EIE)

Time: 3 hours

PART - A

(Compulsory Question)

1 Answer the following: (10 $\times 02=20$ Marks $)$
(a) Evaluate $\int_{0}^{1} x^{4}(1-x)^{2} d x$
(b) Compute $\beta\left(\frac{9}{2}, \frac{7}{2}\right)$
(c) Use Rodrigues formula, show that $\mathrm{P}_{0}(\mathrm{x})=1$.
(d) Prove that $x^{2}=\frac{1}{3} P_{0}(x)+\frac{2}{3} P_{2}(x)$
(e) If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant.
(f) Define Bilinear transformation and write cross ratio of four points.
(g) Evaluate $\int_{0}^{2+i} z^{2} d z$, along the line $y=x / 2$.
(h) Write the statement of Cauchy's integral formula.
(i) Define isolated singular point of an analytic function.
(j) Evaluate $\int_{C} \frac{z-3}{z^{2}+2 z+5} d z$, where C is circle $|z|=1$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Show that $\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x=(b-a)^{m+n+1} \beta(m+1, n+1)$
(b) Show that $\int_{0}^{\infty} x^{m} e^{-x^{n}} d x=\frac{\Gamma(m)}{n^{m}},(\mathrm{~m}, \mathrm{n}>0)$.

OR

3 Obtain the series solution of the equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$.

UNIT - II

4 (a) Show that $J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$
(b) Show that $x^{4}=\frac{1}{35}\left[8 P_{4}(x)+20 P_{2}(x)+7 P_{0}(x)\right]$

OR
5 (a) Prove that $J_{-\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{3}{x} \sin x+\frac{3-x^{2}}{x^{2}} \cos x\right)$
(b) Use Rodrigues formula, show that: (i) $\mathrm{P}_{1}(\mathrm{x})=\mathrm{x}$. (ii) $\mathrm{P}_{2}(\mathrm{x})=\frac{3 x^{2}-1}{2}$.

UNIT - III

6 (a) If $f(z)$ is an analytic function of z prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log |f(z)|=0$
(b) Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{i} \mathrm{v}$ if $\mathrm{u}+\mathrm{v}=\frac{\sin 2 x}{(\cosh 2 y-\cos 2 x)}$

OR
7 (a) Find the analytic function whose real part $u=\frac{\sin 2 x}{(\cosh 2 y-\cos 2 x)}$.
(b) Find the bilinear transformation which maps the points ($\infty, \mathrm{i}, 0$) into the points $(-1,-1,1)$ in w - plane.

UNIT - IV

8 (a) Evaluate $\int_{c}\left(y-x-3 x^{2} i\right) d z$, where C is the straight line from $\mathrm{Z}=0$ to $\mathrm{Z}=1+\mathrm{i}$.
(b) Find Taylor's expansion of $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$ about the point $\mathrm{z}=\mathrm{i}$.

OR
9 (a) Evaluate:

$$
\int_{C} \frac{\cos z-\sin z}{(z+i)^{3}} d z \text { with } C:|z|=2 \text { using Cauchy's integral formula. }
$$

(b) Expand $\frac{\tan z}{z}$ by Laurent's series and then find nature of singularity.

UNIT - V

10 (a) Determine the poles of the function $\frac{z^{2}+1}{z^{2}-2 z}$ and the residue at each pole.
(b) Evaluate $\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x$.

OR

Apply the calculus of residues, to prove that:

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x=\frac{\pi}{a^{2}-b^{2}}\left(\frac{e^{-b}}{b}-\frac{e^{-a}}{a}\right)(a>b>0)
$$

