B.Tech II Year I Semester (R13) Regular \& Supplementary Examinations December 2015 MATHEMATICS - III
 (Common to EEE, ECE and EIE)

Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Define Gamma function and evaluate $\int_{0}^{\infty} e^{-x^{2}} d x$.
(b) Express $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}$ in terms of Beta function.
(c) Express $\operatorname{Cos} \theta$ and $\operatorname{Sin} \theta$ interms of Bessel function.
(d) Prove that $P_{n}^{1}(1)=\frac{1}{2} n(n+1)$
(e) Write the $\mathrm{C}-\mathrm{R}$ equations in both Cartesian and Polar co-ordinates.
(f) Find the fixed points of the transformation: $\omega=\frac{2 i-6 z}{i z-3}$.
(g) State Cauchy's integral theorem.
(h) Define pole of a complex function with example.
(i) State Cauchy's residue theorem.
(j) Evaluate $\int_{C} \frac{5 z-2}{z(z-1)} d z$ where $C:|z|=2$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Show that $\beta(m . n)=2 \int_{0}^{\pi / 2} \operatorname{Sin}^{2 m-1} \theta \operatorname{Cos}^{2 n-1} \theta$ and deduce that $\int_{0}^{\pi / 2} \operatorname{Sin}^{n} \theta d \theta=\int_{0}^{\pi / 2} \operatorname{Cos}^{n} \theta d \theta=\frac{\Gamma\left[\frac{n+1)}{2}\right] \sqrt{\pi}}{2 \Gamma\left(\frac{n+2}{2}\right)}$.
OR
3 Find the power series solution of the equation $y^{\prime \prime}+x y^{\prime}+y=0$ in powers of x.

UNIT - II

Prove that $P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$ and hence express $2 x^{2}-4 x+2$ as Legendre polynomial.
OR
5 (a) Prove that $\frac{d}{d x}\left[x J_{n}(x) J_{n+1}(x)\right]=x\left[J_{n}^{2}(x)-J_{n+1}^{2}(x)\right]$.
(b) Prove that $J_{n+1}(x)=\frac{n}{x} J_{n}(x)-J_{n}^{1}(x)$.

UNIT - III

6 (a) Determine P such that the function: $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an analytic function.
(b) Find the analytic function, whose real part is $u=e^{x}\left[\left(x^{2}-y^{2}\right) \cos y-2 x y \sin y\right]$.

OR

7 (a) Show that the function $\omega=\frac{4}{z}$ transform the straight line $x=c$ in the z-plane into a circle in the ω - plane.
(b) Find the bilinear transformation that maps the points $(0, i, 1)$ into the points $(-1,0,1)$.

UNIT - IV

8
Generate z^{2} along the straight line $O M$ and along the path OLM where ' O ' is the origin, L is the point $z=3$ and M is $z=3+i$ and hence establish the Cauchy's integral theorem.

OR

9 (a) Obtain the Taylor's series to represent the function $\frac{z^{2}-1}{(z+2)(z+3)}$, in the region $|z|<2$.
(b) Expand $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$ about $\mathrm{z}=1$ as Laurent's series. Also find the region of convergence.

UNIT - V

Prove that $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{a+b}(a>0, b>0, a \neq b)$

