B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016
 MATHEMATICS - III
 (Common to EEE, ECE and EIE)

Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Express the integral $\int_{0}^{\infty} e^{-x^{2}} d x$ in terms of gamma function.
(b) Evaluate $\int_{0}^{\pi / 2} \sqrt{\cot \theta} d \theta$
(c) Find the general solution of $y^{\prime \prime}+\frac{y^{\prime}}{x}+\left(1-\frac{1}{9 x^{2}}\right) y=0$.
(d) Show that $P_{1}(x)=x$.
(e) Determine whether the function $u=x^{2}-y^{2}$ is harmonic.
(f) Find the fixed points of the transformation $w=\frac{z-1}{z+1}$.
(g) Evaluate $\int_{C} \frac{\left(z^{2}-z+1\right)}{(z-1)(z-3)} d z$, where $C:|z|=\frac{1}{2}$.
(h) Find the nature and location of singularity of $f(z)=\frac{z-\sin z}{z^{2}}$.
(i) Find the residue of $f(z)=\frac{e^{-z}}{z^{2}}$ at $z=0$.
(j) State residue theorem.

$$
\begin{gathered}
\text { PART - B } \\
\text { (Answer all five units, } 5 \times 10=50 \text { Marks) }
\end{gathered}
$$

UNIT - I

2
(a) Show that $\int_{0}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n \text { ! }}{(m+1)^{n+1}}$, where n is a positive integer and $m>-1$.
(b) Obtain the series solution of the equation $\frac{d^{2} y}{d x^{2}}-y=0$.

OR
3 (a) Obtain the relationship between beta and gamma functions.
(b) Solve the equation $y^{\prime \prime}+x y=0$ in series.

UNIT - II

4 (a) Prove that $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$.
(b) Show that $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$.

OR

5 (a) Show that $J_{\frac{-1}{2}}(x)=\sqrt{\left(\frac{2}{\pi x}\right)} \cos x$.
(b) Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0$, for $m \neq n$.

UNIT - III

6 (a) Find the analytic function, whose real part is $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
(b) Show that the bilinear transformation $w=\frac{2 z+3}{z-4}$ maps the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}=0$ into the line $4 u+3=0$.

OR

7 (a) If $f(z)$ is an analytic function with constant modulus then show that $f(Z)$ is constant.
(b) Find the bilinear transformation which maps the points $1, i,-1$ of the z-plane onto $2, i,-2$ of the w-plane respectively.

UNIT - IV

8 (a) Find the value of $\int_{0}^{1+i}\left(x-y+i x^{2}\right) d z$ along real axis from $z=0$ to $Z=1$ and then along a line parallel to the imaginary axis from $z=1$ to $z=1+i$.
(b) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region: (i) $|z|<1$ and (ii) $1<|z|<2$.

OR

9 (a) Using Cauchy's integral formula, evaluate $\int_{C} \frac{e^{2 z}}{(z-1)(z-2)} d z$, where $C:|z|=3$.
(b) Find the Laurent's expansion of $f(z)=\frac{7 z+2}{(z+1) z(z-2)}$ in the region $1<z+1<3$.

UNIT - V

10 (a) Evaluate $\int_{C} \frac{2 z+1}{(2 z-1)^{2}} d z$, where $C:|z|=1$.
(b) Apply calculus of residues to prove that $\int_{0}^{2 \pi} \frac{1}{17-8 \cos \theta} d \theta=\frac{2 \pi}{15}$.

OR
11 (a) Evaluate $\int_{C} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{2}} d z$, where $C:|z|=2$.

