B.Tech II Year I Semester (R13) Supplementary Examinations November/December 2016

MATHEMATICS - III

(Common to EEE, ECE and EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: (10 X 02 = 20 Marks)

- (a) Express the integral $\int_{0}^{\infty} e^{-x^2} dx$ in terms of gamma function.
- (b) Evaluate $\int_{0}^{\pi/2} \sqrt{\cot \theta} \, d\theta$
- (c) Find the general solution of $y'' + \frac{y'}{x} + \left(1 \frac{1}{9x^2}\right)y = 0$.
- (d) Show that $P_1(x) = x$.
- (e) Determine whether the function $u = x^2 y^2$ is harmonic.
- (f) Find the fixed points of the transformation $w = \frac{z-1}{z+1}$.
- (g) Evaluate $\int_{C} \frac{(z^2 z + 1)}{(z 1)(z 3)} dz$, where $C : |z| = \frac{1}{2}$.
- (h) Find the nature and location of singularity of $f(z) = \frac{z \sin z}{z^2}$.
- (i) Find the residue of $f(z) = \frac{e^{-z}}{z^2}$ at z = 0.
- (i) State residue theorem.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Show that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$, where n is a positive integer and m > -1.
 - (b) Obtain the series solution of the equation $\frac{d^2y}{dx^2} y = 0$.

ΩR

- 3 (a) Obtain the relationship between beta and gamma functions.
 - (b) Solve the equation y'' + xy = 0 in series.

Contd. in page 2

UNIT – II

- 4 (a) Prove that $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} t^n J_n(x)$.
 - (b) Show that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$.

OR

- 5 (a) Show that $J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - (b) Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$, for $m \neq n$.

UNIT - III

- 6 (a) Find the analytic function, whose real part is $\frac{\sin 2x}{\cos h^2 y \cos 2x}$.
 - (b) Show that the bilinear transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into the line 4u + 3 = 0.
- 7 (a) If f(z) is an analytic function with constant modulus then show that f(Z) is constant.
 - (b) Find the bilinear transformation which maps the points 1, i, -1 of the z-plane onto 2, i, -2 of the w-plane respectively.

UNIT - IV

- 8 (a) Find the value of $\int_{0}^{1+i} (x-y+ix^2)dz$ along real axis from z=0 to z=1 and then along a line parallel to the imaginary axis from z=1 to z=1+i.
 - (b) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region : (i) |z| < 1 and (ii) 1 < |z| < 2.

OR

- 9 (a) Using Cauchy's integral formula, evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$, where C:|z|=3.
 - (b) Find the Laurent's expansion of $f(z) = \frac{7z+2}{(z+1)z(z-2)}$ in the region 1 < z+1 < 3.

- 10 (a) Evaluate $\int_{C} \frac{2z+1}{(2z-1)^2} dz$, where C:|z|=1.
 - (b) Apply calculus of residues to prove that $\int_{0}^{2\pi} \frac{1}{17 8\cos\theta} d\theta = \frac{2\pi}{15}.$

OF

- 11 (a) Evaluate $\int_{C} \frac{\sin^2 z}{\left(z \frac{\pi}{6}\right)^2} dz$, where C: |z| = 2.
 - (b) Prove that $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x^2+1)(x^2+1)(x^2+1)(x^2+1)(x^2+1)(x^2+1)} dx = \int_{-\infty}^{\pi} \frac{x^2}{(x^2+1)(x$